Metamath Proof Explorer


Theorem dfaiota3

Description: Alternate definition of iota' : this is to df-aiota what dfiota4 is to df-iota . operation using the if operator. It is simpler than df-aiota and uses no dummy variables, so it would be the preferred definition if iota' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024)

Ref Expression
Assertion dfaiota3 ( ℩' 𝑥 𝜑 ) = if ( ∃! 𝑥 𝜑 , { 𝑥𝜑 } , V )

Proof

Step Hyp Ref Expression
1 aiotaint ( ∃! 𝑥 𝜑 → ( ℩' 𝑥 𝜑 ) = { 𝑥𝜑 } )
2 aiotavb ( ¬ ∃! 𝑥 𝜑 ↔ ( ℩' 𝑥 𝜑 ) = V )
3 2 biimpi ( ¬ ∃! 𝑥 𝜑 → ( ℩' 𝑥 𝜑 ) = V )
4 ifval ( ( ℩' 𝑥 𝜑 ) = if ( ∃! 𝑥 𝜑 , { 𝑥𝜑 } , V ) ↔ ( ( ∃! 𝑥 𝜑 → ( ℩' 𝑥 𝜑 ) = { 𝑥𝜑 } ) ∧ ( ¬ ∃! 𝑥 𝜑 → ( ℩' 𝑥 𝜑 ) = V ) ) )
5 1 3 4 mpbir2an ( ℩' 𝑥 𝜑 ) = if ( ∃! 𝑥 𝜑 , { 𝑥𝜑 } , V )