Metamath Proof Explorer


Theorem dfaiota3

Description: Alternate definition of iota' : this is to df-aiota what dfiota4 is to df-iota . operation using the if operator. It is simpler than df-aiota and uses no dummy variables, so it would be the preferred definition if iota' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024)

Ref Expression
Assertion dfaiota3
|- ( iota' x ph ) = if ( E! x ph , |^| { x | ph } , _V )

Proof

Step Hyp Ref Expression
1 aiotaint
 |-  ( E! x ph -> ( iota' x ph ) = |^| { x | ph } )
2 aiotavb
 |-  ( -. E! x ph <-> ( iota' x ph ) = _V )
3 2 biimpi
 |-  ( -. E! x ph -> ( iota' x ph ) = _V )
4 ifval
 |-  ( ( iota' x ph ) = if ( E! x ph , |^| { x | ph } , _V ) <-> ( ( E! x ph -> ( iota' x ph ) = |^| { x | ph } ) /\ ( -. E! x ph -> ( iota' x ph ) = _V ) ) )
5 1 3 4 mpbir2an
 |-  ( iota' x ph ) = if ( E! x ph , |^| { x | ph } , _V )