Metamath Proof Explorer


Theorem dfatafv2ex

Description: The alternate function value at a class A is always a set if the function/class F is defined at A . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion dfatafv2ex F defAt A F '''' A V

Proof

Step Hyp Ref Expression
1 dfatafv2iota F defAt A F '''' A = ι x | A F x
2 iotaex ι x | A F x V
3 1 2 eqeltrdi F defAt A F '''' A V