Metamath Proof Explorer


Theorem dfatprc

Description: A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022)

Ref Expression
Assertion dfatprc ¬AV¬FdefAtA

Proof

Step Hyp Ref Expression
1 prcnel ¬AV¬AdomF
2 1 orcd ¬AV¬AdomF¬FunFA
3 ianor ¬AdomFFunFA¬AdomF¬FunFA
4 df-dfat FdefAtAAdomFFunFA
5 3 4 xchnxbir ¬FdefAtA¬AdomF¬FunFA
6 2 5 sylibr ¬AV¬FdefAtA