Metamath Proof Explorer


Theorem dfdisjs5

Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfdisjs5 Disjs = r Rels | u dom r v dom r u = v u r v r =

Proof

Step Hyp Ref Expression
1 dfdisjs2 Disjs = r Rels | r -1 I
2 cosscnvssid5 r -1 I Rel r u dom r v dom r u = v u r v r = Rel r
3 elrelsrelim r Rels Rel r
4 3 biantrud r Rels r -1 I r -1 I Rel r
5 3 biantrud r Rels u dom r v dom r u = v u r v r = u dom r v dom r u = v u r v r = Rel r
6 4 5 bibi12d r Rels r -1 I u dom r v dom r u = v u r v r = r -1 I Rel r u dom r v dom r u = v u r v r = Rel r
7 2 6 mpbiri r Rels r -1 I u dom r v dom r u = v u r v r =
8 1 7 rabimbieq Disjs = r Rels | u dom r v dom r u = v u r v r =