Metamath Proof Explorer


Theorem dfepfr

Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion dfepfr EFrAxxAxyxxy=

Proof

Step Hyp Ref Expression
1 dffr2 EFrAxxAxyxzx|zEy=
2 epel zEyzy
3 2 rabbii zx|zEy=zx|zy
4 dfin5 xy=zx|zy
5 3 4 eqtr4i zx|zEy=xy
6 5 eqeq1i zx|zEy=xy=
7 6 rexbii yxzx|zEy=yxxy=
8 7 imbi2i xAxyxzx|zEy=xAxyxxy=
9 8 albii xxAxyxzx|zEy=xxAxyxxy=
10 1 9 bitri EFrAxxAxyxxy=