Metamath Proof Explorer


Theorem dff14a

Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Assertion dff14a F:A1-1BF:ABxAyAxyFxFy

Proof

Step Hyp Ref Expression
1 dff13 F:A1-1BF:ABxAyAFx=Fyx=y
2 con34b Fx=Fyx=y¬x=y¬Fx=Fy
3 df-ne xy¬x=y
4 3 bicomi ¬x=yxy
5 df-ne FxFy¬Fx=Fy
6 5 bicomi ¬Fx=FyFxFy
7 4 6 imbi12i ¬x=y¬Fx=FyxyFxFy
8 2 7 bitri Fx=Fyx=yxyFxFy
9 8 2ralbii xAyAFx=Fyx=yxAyAxyFxFy
10 9 anbi2i F:ABxAyAFx=Fyx=yF:ABxAyAxyFxFy
11 1 10 bitri F:A1-1BF:ABxAyAxyFxFy