Metamath Proof Explorer


Theorem dffn3

Description: A function maps to its range. (Contributed by NM, 1-Sep-1999)

Ref Expression
Assertion dffn3 FFnAF:AranF

Proof

Step Hyp Ref Expression
1 ssid ranFranF
2 1 biantru FFnAFFnAranFranF
3 df-f F:AranFFFnAranFranF
4 2 3 bitr4i FFnAF:AranF