Metamath Proof Explorer


Theorem dffo2

Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion dffo2 F:AontoBF:ABranF=B

Proof

Step Hyp Ref Expression
1 fof F:AontoBF:AB
2 forn F:AontoBranF=B
3 1 2 jca F:AontoBF:ABranF=B
4 ffn F:ABFFnA
5 df-fo F:AontoBFFnAranF=B
6 5 biimpri FFnAranF=BF:AontoB
7 4 6 sylan F:ABranF=BF:AontoB
8 3 7 impbii F:AontoBF:ABranF=B