Metamath Proof Explorer


Theorem dffun9

Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion dffun9 FunARelAxdomA*yranAxAy

Proof

Step Hyp Ref Expression
1 dffun7 FunARelAxdomA*yxAy
2 vex xV
3 vex yV
4 2 3 brelrn xAyyranA
5 4 pm4.71ri xAyyranAxAy
6 5 mobii *yxAy*yyranAxAy
7 df-rmo *yranAxAy*yyranAxAy
8 6 7 bitr4i *yxAy*yranAxAy
9 8 ralbii xdomA*yxAyxdomA*yranAxAy
10 9 anbi2i RelAxdomA*yxAyRelAxdomA*yranAxAy
11 1 10 bitri FunARelAxdomA*yranAxAy