Metamath Proof Explorer


Theorem dffunsALTV3

Description: Alternate definition of the class of functions. For the X axis and the Y axis you can convert the right side to { f e. Rels | A. x1 A. y1 A. y2 ( ( x1 f y1 /\ x1 f y2 ) -> y1 = y2 ) } . (Contributed by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion dffunsALTV3 FunsALTV=fRels|uxyufxufyx=y

Proof

Step Hyp Ref Expression
1 dffunsALTV FunsALTV=fRels|fCnvRefRels
2 cosselcnvrefrels3 fCnvRefRelsuxyufxufyx=yfRels
3 cosselrels fRelsfRels
4 3 biantrud fRelsuxyufxufyx=yuxyufxufyx=yfRels
5 2 4 bitr4id fRelsfCnvRefRelsuxyufxufyx=y
6 1 5 rabimbieq FunsALTV=fRels|uxyufxufyx=y