| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffunsALTV | ⊢  FunsALTV   =  { 𝑓  ∈   Rels   ∣   ≀  𝑓  ∈   CnvRefRels  } | 
						
							| 2 |  | cosselcnvrefrels3 | ⊢ (  ≀  𝑓  ∈   CnvRefRels   ↔  ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥  ∧  𝑢 𝑓 𝑦 )  →  𝑥  =  𝑦 )  ∧   ≀  𝑓  ∈   Rels  ) ) | 
						
							| 3 |  | cosselrels | ⊢ ( 𝑓  ∈   Rels   →   ≀  𝑓  ∈   Rels  ) | 
						
							| 4 | 3 | biantrud | ⊢ ( 𝑓  ∈   Rels   →  ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥  ∧  𝑢 𝑓 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥  ∧  𝑢 𝑓 𝑦 )  →  𝑥  =  𝑦 )  ∧   ≀  𝑓  ∈   Rels  ) ) ) | 
						
							| 5 | 2 4 | bitr4id | ⊢ ( 𝑓  ∈   Rels   →  (  ≀  𝑓  ∈   CnvRefRels   ↔  ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥  ∧  𝑢 𝑓 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 6 | 1 5 | rabimbieq | ⊢  FunsALTV   =  { 𝑓  ∈   Rels   ∣  ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥  ∧  𝑢 𝑓 𝑦 )  →  𝑥  =  𝑦 ) } |