Metamath Proof Explorer


Theorem dffunsALTV3

Description: Alternate definition of the class of functions. For the X axis and the Y axis you can convert the right side to { f e. Rels | A. x1 A. y1 A. y2 ( ( x1 f y1 /\ x1 f y2 ) -> y1 = y2 ) } . (Contributed by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion dffunsALTV3 FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑓 𝑥𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) }

Proof

Step Hyp Ref Expression
1 dffunsALTV FunsALTV = { 𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }
2 cosselcnvrefrels3 ( ≀ 𝑓 ∈ CnvRefRels ↔ ( ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑓 𝑥𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑓 ∈ Rels ) )
3 cosselrels ( 𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels )
4 3 biantrud ( 𝑓 ∈ Rels → ( ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑓 𝑥𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑓 𝑥𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑓 ∈ Rels ) ) )
5 2 4 bitr4id ( 𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑓 𝑥𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) ) )
6 1 5 rabimbieq FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑓 𝑥𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) }