Metamath Proof Explorer


Theorem dflidl2lem

Description: Lemma for dflidl2 : a sufficient condition for a set to be a left ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses dflidl2.u U=LIdealR
dflidl2.b B=BaseR
dflidl2.t ·˙=R
Assertion dflidl2lem ISubGrpRxByIx·˙yIIU

Proof

Step Hyp Ref Expression
1 dflidl2.u U=LIdealR
2 dflidl2.b B=BaseR
3 dflidl2.t ·˙=R
4 2 subgss ISubGrpRIB
5 4 adantr ISubGrpRxByIx·˙yIIB
6 eqid 0R=0R
7 6 subg0cl ISubGrpR0RI
8 7 ne0d ISubGrpRI
9 8 adantr ISubGrpRxByIx·˙yII
10 eqid +R=+R
11 10 subgcl ISubGrpRx·˙yIzIx·˙y+RzI
12 11 ad4ant134 ISubGrpRxByIx·˙yIzIx·˙y+RzI
13 12 ralrimiva ISubGrpRxByIx·˙yIzIx·˙y+RzI
14 13 ex ISubGrpRxByIx·˙yIzIx·˙y+RzI
15 14 ralimdvva ISubGrpRxByIx·˙yIxByIzIx·˙y+RzI
16 15 imp ISubGrpRxByIx·˙yIxByIzIx·˙y+RzI
17 1 2 10 3 islidl IUIBIxByIzIx·˙y+RzI
18 5 9 16 17 syl3anbrc ISubGrpRxByIx·˙yIIU