Metamath Proof Explorer


Theorem dfnrm2

Description: A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Assertion dfnrm2 Nrm=jTop|cClsdjdClsdjcd=xjyjcxdyxy=

Proof

Step Hyp Ref Expression
1 isnrm3 jNrmjTopcClsdjdClsdjcd=xjyjcxdyxy=
2 1 eqabi Nrm=j|jTopcClsdjdClsdjcd=xjyjcxdyxy=
3 df-rab jTop|cClsdjdClsdjcd=xjyjcxdyxy==j|jTopcClsdjdClsdjcd=xjyjcxdyxy=
4 2 3 eqtr4i Nrm=jTop|cClsdjdClsdjcd=xjyjcxdyxy=