Metamath Proof Explorer


Theorem dfnrm2

Description: A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Assertion dfnrm2 Nrm = j Top | c Clsd j d Clsd j c d = x j y j c x d y x y =

Proof

Step Hyp Ref Expression
1 isnrm3 j Nrm j Top c Clsd j d Clsd j c d = x j y j c x d y x y =
2 1 abbi2i Nrm = j | j Top c Clsd j d Clsd j c d = x j y j c x d y x y =
3 df-rab j Top | c Clsd j d Clsd j c d = x j y j c x d y x y = = j | j Top c Clsd j d Clsd j c d = x j y j c x d y x y =
4 2 3 eqtr4i Nrm = j Top | c Clsd j d Clsd j c d = x j y j c x d y x y =