Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Alternate definitions using the "modulo" operation
dfodd5
Next ⟩
zefldiv2ALTV
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfodd5
Description:
Alternate definition for odd numbers.
(Contributed by
AV
, 18-Jun-2020)
Ref
Expression
Assertion
dfodd5
⊢
Odd
=
z
∈
ℤ
|
z
mod
2
≠
0
Proof
Step
Hyp
Ref
Expression
1
dfodd4
⊢
Odd
=
z
∈
ℤ
|
z
mod
2
=
1
2
elmod2
⊢
z
∈
ℤ
→
z
mod
2
∈
0
1
3
prcom
⊢
0
1
=
1
0
4
3
eleq2i
⊢
z
mod
2
∈
0
1
↔
z
mod
2
∈
1
0
5
4
biimpi
⊢
z
mod
2
∈
0
1
→
z
mod
2
∈
1
0
6
ax-1ne0
⊢
1
≠
0
7
elprneb
⊢
z
mod
2
∈
1
0
∧
1
≠
0
→
z
mod
2
=
1
↔
z
mod
2
≠
0
8
5
6
7
sylancl
⊢
z
mod
2
∈
0
1
→
z
mod
2
=
1
↔
z
mod
2
≠
0
9
2
8
syl
⊢
z
∈
ℤ
→
z
mod
2
=
1
↔
z
mod
2
≠
0
10
9
rabbiia
⊢
z
∈
ℤ
|
z
mod
2
=
1
=
z
∈
ℤ
|
z
mod
2
≠
0
11
1
10
eqtri
⊢
Odd
=
z
∈
ℤ
|
z
mod
2
≠
0