Metamath Proof Explorer


Theorem dfodd5

Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfodd5 Odd=z|zmod20

Proof

Step Hyp Ref Expression
1 dfodd4 Odd=z|zmod2=1
2 elmod2 zzmod201
3 prcom 01=10
4 3 eleq2i zmod201zmod210
5 4 biimpi zmod201zmod210
6 ax-1ne0 10
7 elprneb zmod21010zmod2=1zmod20
8 5 6 7 sylancl zmod201zmod2=1zmod20
9 2 8 syl zzmod2=1zmod20
10 9 rabbiia z|zmod2=1=z|zmod20
11 1 10 eqtri Odd=z|zmod20