Metamath Proof Explorer


Theorem dfss2OLD

Description: Obsolete version of dfss2 as of 16-May-2024. (Contributed by NM, 8-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfss2OLD ABxxAxB

Proof

Step Hyp Ref Expression
1 dfss ABA=AB
2 df-in AB=x|xAxB
3 2 eqeq2i A=ABA=x|xAxB
4 eqabb A=x|xAxBxxAxAxB
5 1 3 4 3bitri ABxxAxAxB
6 pm4.71 xAxBxAxAxB
7 6 albii xxAxBxxAxAxB
8 5 7 bitr4i ABxxAxB