Metamath Proof Explorer


Theorem dfsucmap2

Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dfsucmap2 Could not format assertion : No typesetting found for |- SucMap = ( _I AdjLiftMap dom _I ) with typecode |-

Proof

Step Hyp Ref Expression
1 dfsucmap3 Could not format SucMap = ( _I AdjLiftMap _V ) : No typesetting found for |- SucMap = ( _I AdjLiftMap _V ) with typecode |-
2 dmi dom I = V
3 2 reseq2i I E -1 dom I = I E -1 V
4 3 dmeqi dom I E -1 dom I = dom I E -1 V
5 3 eceq2i m I E -1 dom I = m I E -1 V
6 4 5 mpteq12i m dom I E -1 dom I m I E -1 dom I = m dom I E -1 V m I E -1 V
7 df-adjliftmap Could not format ( _I AdjLiftMap dom _I ) = ( m e. dom ( ( _I u. `' _E ) |` dom _I ) |-> [ m ] ( ( _I u. `' _E ) |` dom _I ) ) : No typesetting found for |- ( _I AdjLiftMap dom _I ) = ( m e. dom ( ( _I u. `' _E ) |` dom _I ) |-> [ m ] ( ( _I u. `' _E ) |` dom _I ) ) with typecode |-
8 df-adjliftmap Could not format ( _I AdjLiftMap _V ) = ( m e. dom ( ( _I u. `' _E ) |` _V ) |-> [ m ] ( ( _I u. `' _E ) |` _V ) ) : No typesetting found for |- ( _I AdjLiftMap _V ) = ( m e. dom ( ( _I u. `' _E ) |` _V ) |-> [ m ] ( ( _I u. `' _E ) |` _V ) ) with typecode |-
9 6 7 8 3eqtr4i Could not format ( _I AdjLiftMap dom _I ) = ( _I AdjLiftMap _V ) : No typesetting found for |- ( _I AdjLiftMap dom _I ) = ( _I AdjLiftMap _V ) with typecode |-
10 1 9 eqtr4i Could not format SucMap = ( _I AdjLiftMap dom _I ) : No typesetting found for |- SucMap = ( _I AdjLiftMap dom _I ) with typecode |-