Metamath Proof Explorer


Theorem dftpos2

Description: Alternate definition of tpos when F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion dftpos2 ReldomFtposF=FxdomF-1x-1

Proof

Step Hyp Ref Expression
1 dmtpos ReldomFdomtposF=domF-1
2 1 reseq2d ReldomFtposFdomtposF=tposFdomF-1
3 reltpos ReltposF
4 resdm ReltposFtposFdomtposF=tposF
5 3 4 ax-mp tposFdomtposF=tposF
6 df-tpos tposF=FxdomF-1x-1
7 6 reseq1i tposFdomF-1=FxdomF-1x-1domF-1
8 resco FxdomF-1x-1domF-1=FxdomF-1x-1domF-1
9 ssun1 domF-1domF-1
10 resmpt domF-1domF-1xdomF-1x-1domF-1=xdomF-1x-1
11 9 10 ax-mp xdomF-1x-1domF-1=xdomF-1x-1
12 11 coeq2i FxdomF-1x-1domF-1=FxdomF-1x-1
13 7 8 12 3eqtri tposFdomF-1=FxdomF-1x-1
14 2 5 13 3eqtr3g ReldomFtposF=FxdomF-1x-1