Metamath Proof Explorer


Theorem dftpos5

Description: Alternate definition of tpos . (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion dftpos5 tpos F = F x dom F -1 x -1

Proof

Step Hyp Ref Expression
1 df-tpos tpos F = F x dom F -1 x -1
2 mptun x dom F -1 x -1 = x dom F -1 x -1 x x -1
3 0ex V
4 sneq x = x =
5 4 cnveqd x = x -1 = -1
6 5 unieqd x = x -1 = -1
7 cnvsn0 -1 =
8 7 unieqi -1 =
9 uni0 =
10 8 9 eqtri -1 =
11 6 10 eqtrdi x = x -1 =
12 11 fmptsng V V = x x -1
13 3 3 12 mp2an = x x -1
14 13 uneq2i x dom F -1 x -1 = x dom F -1 x -1 x x -1
15 2 14 eqtr4i x dom F -1 x -1 = x dom F -1 x -1
16 15 coeq2i F x dom F -1 x -1 = F x dom F -1 x -1
17 1 16 eqtri tpos F = F x dom F -1 x -1