Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Union
Function transposition
dftpos5
Next ⟩
dftpos6
Metamath Proof Explorer
Ascii
Unicode
Theorem
dftpos5
Description:
Alternate definition of
tpos
.
(Contributed by
Zhi Wang
, 6-Oct-2025)
Ref
Expression
Assertion
dftpos5
⊢
tpos
F
=
F
∘
x
∈
dom
⁡
F
-1
⟼
⋃
x
-1
∪
∅
∅
Proof
Step
Hyp
Ref
Expression
1
df-tpos
⊢
tpos
F
=
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
2
mptun
⊢
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
=
x
∈
dom
⁡
F
-1
⟼
⋃
x
-1
∪
x
∈
∅
⟼
⋃
x
-1
3
0ex
⊢
∅
∈
V
4
sneq
⊢
x
=
∅
→
x
=
∅
5
4
cnveqd
⊢
x
=
∅
→
x
-1
=
∅
-1
6
5
unieqd
⊢
x
=
∅
→
⋃
x
-1
=
⋃
∅
-1
7
cnvsn0
⊢
∅
-1
=
∅
8
7
unieqi
⊢
⋃
∅
-1
=
⋃
∅
9
uni0
⊢
⋃
∅
=
∅
10
8
9
eqtri
⊢
⋃
∅
-1
=
∅
11
6
10
eqtrdi
⊢
x
=
∅
→
⋃
x
-1
=
∅
12
11
fmptsng
⊢
∅
∈
V
∧
∅
∈
V
→
∅
∅
=
x
∈
∅
⟼
⋃
x
-1
13
3
3
12
mp2an
⊢
∅
∅
=
x
∈
∅
⟼
⋃
x
-1
14
13
uneq2i
⊢
x
∈
dom
⁡
F
-1
⟼
⋃
x
-1
∪
∅
∅
=
x
∈
dom
⁡
F
-1
⟼
⋃
x
-1
∪
x
∈
∅
⟼
⋃
x
-1
15
2
14
eqtr4i
⊢
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
=
x
∈
dom
⁡
F
-1
⟼
⋃
x
-1
∪
∅
∅
16
15
coeq2i
⊢
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
=
F
∘
x
∈
dom
⁡
F
-1
⟼
⋃
x
-1
∪
∅
∅
17
1
16
eqtri
⊢
tpos
F
=
F
∘
x
∈
dom
⁡
F
-1
⟼
⋃
x
-1
∪
∅
∅