Metamath Proof Explorer


Theorem dfwrecsOLD

Description: Obsolete definition of the well-ordered recursive function generator as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 7-Jun-2018)

Ref Expression
Assertion dfwrecsOLD wrecsRAF=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy

Proof

Step Hyp Ref Expression
1 df-wrecs wrecsRAF=frecsRAF2nd
2 df-frecs frecsRAF2nd=f|xfFnxxAyxPredRAyxyxfy=yF2ndfPredRAy
3 vex yV
4 3 a1i yV
5 vex fV
6 5 resex fPredRAyV
7 6 a1i fPredRAyV
8 4 7 opco2 yF2ndfPredRAy=FfPredRAy
9 8 mptru yF2ndfPredRAy=FfPredRAy
10 9 eqeq2i fy=yF2ndfPredRAyfy=FfPredRAy
11 10 ralbii yxfy=yF2ndfPredRAyyxfy=FfPredRAy
12 11 3anbi3i fFnxxAyxPredRAyxyxfy=yF2ndfPredRAyfFnxxAyxPredRAyxyxfy=FfPredRAy
13 12 exbii xfFnxxAyxPredRAyxyxfy=yF2ndfPredRAyxfFnxxAyxPredRAyxyxfy=FfPredRAy
14 13 abbii f|xfFnxxAyxPredRAyxyxfy=yF2ndfPredRAy=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
15 14 unieqi f|xfFnxxAyxPredRAyxyxfy=yF2ndfPredRAy=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
16 1 2 15 3eqtri wrecsRAF=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy