Metamath Proof Explorer


Theorem diadmleN

Description: A member of domain of the partial isomorphism A is under the fiducial hyperplane. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diadmle.l ˙=K
diadmle.h H=LHypK
diadmle.i I=DIsoAKW
Assertion diadmleN KVWHXdomIX˙W

Proof

Step Hyp Ref Expression
1 diadmle.l ˙=K
2 diadmle.h H=LHypK
3 diadmle.i I=DIsoAKW
4 eqid BaseK=BaseK
5 4 1 2 3 diaeldm KVWHXdomIXBaseKX˙W
6 5 simplbda KVWHXdomIX˙W