Metamath Proof Explorer


Theorem diagcic

Description: Any category C is isomorphic to the category of functors from a terminal category to C . Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large ( snnex ) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diagffth.c φ C Cat
diagffth.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
diagffth.q Q = D FuncCat C
diagciso.e E = CatCat U
diagciso.u φ U V
diagciso.c φ C U
diagciso.1 φ Q U
Assertion diagcic φ C 𝑐 E Q

Proof

Step Hyp Ref Expression
1 diagffth.c φ C Cat
2 diagffth.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
3 diagffth.q Q = D FuncCat C
4 diagciso.e E = CatCat U
5 diagciso.u φ U V
6 diagciso.c φ C U
7 diagciso.1 φ Q U
8 eqid Iso E = Iso E
9 eqid Base E = Base E
10 4 catccat U V E Cat
11 5 10 syl φ E Cat
12 6 1 elind φ C U Cat
13 4 9 5 catcbas φ Base E = U Cat
14 12 13 eleqtrrd φ C Base E
15 2 termccd φ D Cat
16 3 15 1 fuccat φ Q Cat
17 7 16 elind φ Q U Cat
18 17 13 eleqtrrd φ Q Base E
19 eqid C Δ func D = C Δ func D
20 1 2 3 4 5 6 7 8 19 diagciso φ C Δ func D C Iso E Q
21 8 9 11 14 18 20 brcici φ C 𝑐 E Q