Metamath Proof Explorer


Theorem diagcic

Description: Any category C is isomorphic to the category of functors from a terminal category to C . Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large ( snnex ) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diagffth.c ( 𝜑𝐶 ∈ Cat )
diagffth.d ( 𝜑𝐷 ∈ TermCat )
diagffth.q 𝑄 = ( 𝐷 FuncCat 𝐶 )
diagciso.e 𝐸 = ( CatCat ‘ 𝑈 )
diagciso.u ( 𝜑𝑈𝑉 )
diagciso.c ( 𝜑𝐶𝑈 )
diagciso.1 ( 𝜑𝑄𝑈 )
Assertion diagcic ( 𝜑𝐶 ( ≃𝑐𝐸 ) 𝑄 )

Proof

Step Hyp Ref Expression
1 diagffth.c ( 𝜑𝐶 ∈ Cat )
2 diagffth.d ( 𝜑𝐷 ∈ TermCat )
3 diagffth.q 𝑄 = ( 𝐷 FuncCat 𝐶 )
4 diagciso.e 𝐸 = ( CatCat ‘ 𝑈 )
5 diagciso.u ( 𝜑𝑈𝑉 )
6 diagciso.c ( 𝜑𝐶𝑈 )
7 diagciso.1 ( 𝜑𝑄𝑈 )
8 eqid ( Iso ‘ 𝐸 ) = ( Iso ‘ 𝐸 )
9 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
10 4 catccat ( 𝑈𝑉𝐸 ∈ Cat )
11 5 10 syl ( 𝜑𝐸 ∈ Cat )
12 6 1 elind ( 𝜑𝐶 ∈ ( 𝑈 ∩ Cat ) )
13 4 9 5 catcbas ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) )
14 12 13 eleqtrrd ( 𝜑𝐶 ∈ ( Base ‘ 𝐸 ) )
15 2 termccd ( 𝜑𝐷 ∈ Cat )
16 3 15 1 fuccat ( 𝜑𝑄 ∈ Cat )
17 7 16 elind ( 𝜑𝑄 ∈ ( 𝑈 ∩ Cat ) )
18 17 13 eleqtrrd ( 𝜑𝑄 ∈ ( Base ‘ 𝐸 ) )
19 eqid ( 𝐶 Δfunc 𝐷 ) = ( 𝐶 Δfunc 𝐷 )
20 1 2 3 4 5 6 7 8 19 diagciso ( 𝜑 → ( 𝐶 Δfunc 𝐷 ) ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑄 ) )
21 8 9 11 14 18 20 brcici ( 𝜑𝐶 ( ≃𝑐𝐸 ) 𝑄 )