| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diagffth.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
diagffth.d |
⊢ ( 𝜑 → 𝐷 ∈ TermCat ) |
| 3 |
|
diagffth.q |
⊢ 𝑄 = ( 𝐷 FuncCat 𝐶 ) |
| 4 |
|
diagciso.e |
⊢ 𝐸 = ( CatCat ‘ 𝑈 ) |
| 5 |
|
diagciso.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 6 |
|
diagciso.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 7 |
|
diagciso.1 |
⊢ ( 𝜑 → 𝑄 ∈ 𝑈 ) |
| 8 |
|
eqid |
⊢ ( Iso ‘ 𝐸 ) = ( Iso ‘ 𝐸 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 10 |
4
|
catccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐸 ∈ Cat ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 12 |
6 1
|
elind |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑈 ∩ Cat ) ) |
| 13 |
4 9 5
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 14 |
12 13
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐸 ) ) |
| 15 |
2
|
termccd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 16 |
3 15 1
|
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 17 |
7 16
|
elind |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑈 ∩ Cat ) ) |
| 18 |
17 13
|
eleqtrrd |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐸 ) ) |
| 19 |
|
eqid |
⊢ ( 𝐶 Δfunc 𝐷 ) = ( 𝐶 Δfunc 𝐷 ) |
| 20 |
1 2 3 4 5 6 7 8 19
|
diagciso |
⊢ ( 𝜑 → ( 𝐶 Δfunc 𝐷 ) ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑄 ) ) |
| 21 |
8 9 11 14 18 20
|
brcici |
⊢ ( 𝜑 → 𝐶 ( ≃𝑐 ‘ 𝐸 ) 𝑄 ) |