| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diagffth.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
diagffth.d |
|- ( ph -> D e. TermCat ) |
| 3 |
|
diagffth.q |
|- Q = ( D FuncCat C ) |
| 4 |
|
diagciso.e |
|- E = ( CatCat ` U ) |
| 5 |
|
diagciso.u |
|- ( ph -> U e. V ) |
| 6 |
|
diagciso.c |
|- ( ph -> C e. U ) |
| 7 |
|
diagciso.1 |
|- ( ph -> Q e. U ) |
| 8 |
|
eqid |
|- ( Iso ` E ) = ( Iso ` E ) |
| 9 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 10 |
4
|
catccat |
|- ( U e. V -> E e. Cat ) |
| 11 |
5 10
|
syl |
|- ( ph -> E e. Cat ) |
| 12 |
6 1
|
elind |
|- ( ph -> C e. ( U i^i Cat ) ) |
| 13 |
4 9 5
|
catcbas |
|- ( ph -> ( Base ` E ) = ( U i^i Cat ) ) |
| 14 |
12 13
|
eleqtrrd |
|- ( ph -> C e. ( Base ` E ) ) |
| 15 |
2
|
termccd |
|- ( ph -> D e. Cat ) |
| 16 |
3 15 1
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 17 |
7 16
|
elind |
|- ( ph -> Q e. ( U i^i Cat ) ) |
| 18 |
17 13
|
eleqtrrd |
|- ( ph -> Q e. ( Base ` E ) ) |
| 19 |
|
eqid |
|- ( C DiagFunc D ) = ( C DiagFunc D ) |
| 20 |
1 2 3 4 5 6 7 8 19
|
diagciso |
|- ( ph -> ( C DiagFunc D ) e. ( C ( Iso ` E ) Q ) ) |
| 21 |
8 9 11 14 18 20
|
brcici |
|- ( ph -> C ( ~=c ` E ) Q ) |