Metamath Proof Explorer


Theorem diagcic

Description: Any category C is isomorphic to the category of functors from a terminal category to C . Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large ( snnex ) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diagffth.c
|- ( ph -> C e. Cat )
diagffth.d
|- ( ph -> D e. TermCat )
diagffth.q
|- Q = ( D FuncCat C )
diagciso.e
|- E = ( CatCat ` U )
diagciso.u
|- ( ph -> U e. V )
diagciso.c
|- ( ph -> C e. U )
diagciso.1
|- ( ph -> Q e. U )
Assertion diagcic
|- ( ph -> C ( ~=c ` E ) Q )

Proof

Step Hyp Ref Expression
1 diagffth.c
 |-  ( ph -> C e. Cat )
2 diagffth.d
 |-  ( ph -> D e. TermCat )
3 diagffth.q
 |-  Q = ( D FuncCat C )
4 diagciso.e
 |-  E = ( CatCat ` U )
5 diagciso.u
 |-  ( ph -> U e. V )
6 diagciso.c
 |-  ( ph -> C e. U )
7 diagciso.1
 |-  ( ph -> Q e. U )
8 eqid
 |-  ( Iso ` E ) = ( Iso ` E )
9 eqid
 |-  ( Base ` E ) = ( Base ` E )
10 4 catccat
 |-  ( U e. V -> E e. Cat )
11 5 10 syl
 |-  ( ph -> E e. Cat )
12 6 1 elind
 |-  ( ph -> C e. ( U i^i Cat ) )
13 4 9 5 catcbas
 |-  ( ph -> ( Base ` E ) = ( U i^i Cat ) )
14 12 13 eleqtrrd
 |-  ( ph -> C e. ( Base ` E ) )
15 2 termccd
 |-  ( ph -> D e. Cat )
16 3 15 1 fuccat
 |-  ( ph -> Q e. Cat )
17 7 16 elind
 |-  ( ph -> Q e. ( U i^i Cat ) )
18 17 13 eleqtrrd
 |-  ( ph -> Q e. ( Base ` E ) )
19 eqid
 |-  ( C DiagFunc D ) = ( C DiagFunc D )
20 1 2 3 4 5 6 7 8 19 diagciso
 |-  ( ph -> ( C DiagFunc D ) e. ( C ( Iso ` E ) Q ) )
21 8 9 11 14 18 20 brcici
 |-  ( ph -> C ( ~=c ` E ) Q )