Description: The diagonal functor is an isomorphism from a category C to the category of functors from a terminal category to C .
It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of ( D evalF C ) , i.e., U. ran ( 1st( <. D , Q >. curryF ( ( D evalF C ) o.func ( D swapF Q ) ) ) ) .
(Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagffth.c | |- ( ph -> C e. Cat ) |
|
| diagffth.d | |- ( ph -> D e. TermCat ) |
||
| diagffth.q | |- Q = ( D FuncCat C ) |
||
| diagciso.e | |- E = ( CatCat ` U ) |
||
| diagciso.u | |- ( ph -> U e. V ) |
||
| diagciso.c | |- ( ph -> C e. U ) |
||
| diagciso.1 | |- ( ph -> Q e. U ) |
||
| diagciso.i | |- I = ( Iso ` E ) |
||
| diagciso.l | |- L = ( C DiagFunc D ) |
||
| Assertion | diagciso | |- ( ph -> L e. ( C I Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagffth.c | |- ( ph -> C e. Cat ) |
|
| 2 | diagffth.d | |- ( ph -> D e. TermCat ) |
|
| 3 | diagffth.q | |- Q = ( D FuncCat C ) |
|
| 4 | diagciso.e | |- E = ( CatCat ` U ) |
|
| 5 | diagciso.u | |- ( ph -> U e. V ) |
|
| 6 | diagciso.c | |- ( ph -> C e. U ) |
|
| 7 | diagciso.1 | |- ( ph -> Q e. U ) |
|
| 8 | diagciso.i | |- I = ( Iso ` E ) |
|
| 9 | diagciso.l | |- L = ( C DiagFunc D ) |
|
| 10 | 1 2 3 9 | diagffth | |- ( ph -> L e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | 11 2 1 9 | diag1f1o | |- ( ph -> ( 1st ` L ) : ( Base ` C ) -1-1-onto-> ( D Func C ) ) |
| 13 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 14 | 3 | fucbas | |- ( D Func C ) = ( Base ` Q ) |
| 15 | 6 1 | elind | |- ( ph -> C e. ( U i^i Cat ) ) |
| 16 | 4 13 5 | catcbas | |- ( ph -> ( Base ` E ) = ( U i^i Cat ) ) |
| 17 | 15 16 | eleqtrrd | |- ( ph -> C e. ( Base ` E ) ) |
| 18 | 2 | termccd | |- ( ph -> D e. Cat ) |
| 19 | 3 18 1 | fuccat | |- ( ph -> Q e. Cat ) |
| 20 | 7 19 | elind | |- ( ph -> Q e. ( U i^i Cat ) ) |
| 21 | 20 16 | eleqtrrd | |- ( ph -> Q e. ( Base ` E ) ) |
| 22 | 4 13 11 14 5 17 21 8 | catciso | |- ( ph -> ( L e. ( C I Q ) <-> ( L e. ( ( C Full Q ) i^i ( C Faith Q ) ) /\ ( 1st ` L ) : ( Base ` C ) -1-1-onto-> ( D Func C ) ) ) ) |
| 23 | 10 12 22 | mpbir2and | |- ( ph -> L e. ( C I Q ) ) |