Metamath Proof Explorer


Theorem diagciso

Description: The diagonal functor is an isomorphism from a category C to the category of functors from a terminal category to C .

It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of ( D evalF C ) , i.e., U. ran ( 1st( <. D , Q >. curryF ( ( D evalF C ) o.func ( D swapF Q ) ) ) ) .

(Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diagffth.c
|- ( ph -> C e. Cat )
diagffth.d
|- ( ph -> D e. TermCat )
diagffth.q
|- Q = ( D FuncCat C )
diagciso.e
|- E = ( CatCat ` U )
diagciso.u
|- ( ph -> U e. V )
diagciso.c
|- ( ph -> C e. U )
diagciso.1
|- ( ph -> Q e. U )
diagciso.i
|- I = ( Iso ` E )
diagciso.l
|- L = ( C DiagFunc D )
Assertion diagciso
|- ( ph -> L e. ( C I Q ) )

Proof

Step Hyp Ref Expression
1 diagffth.c
 |-  ( ph -> C e. Cat )
2 diagffth.d
 |-  ( ph -> D e. TermCat )
3 diagffth.q
 |-  Q = ( D FuncCat C )
4 diagciso.e
 |-  E = ( CatCat ` U )
5 diagciso.u
 |-  ( ph -> U e. V )
6 diagciso.c
 |-  ( ph -> C e. U )
7 diagciso.1
 |-  ( ph -> Q e. U )
8 diagciso.i
 |-  I = ( Iso ` E )
9 diagciso.l
 |-  L = ( C DiagFunc D )
10 1 2 3 9 diagffth
 |-  ( ph -> L e. ( ( C Full Q ) i^i ( C Faith Q ) ) )
11 eqid
 |-  ( Base ` C ) = ( Base ` C )
12 11 2 1 9 diag1f1o
 |-  ( ph -> ( 1st ` L ) : ( Base ` C ) -1-1-onto-> ( D Func C ) )
13 eqid
 |-  ( Base ` E ) = ( Base ` E )
14 3 fucbas
 |-  ( D Func C ) = ( Base ` Q )
15 6 1 elind
 |-  ( ph -> C e. ( U i^i Cat ) )
16 4 13 5 catcbas
 |-  ( ph -> ( Base ` E ) = ( U i^i Cat ) )
17 15 16 eleqtrrd
 |-  ( ph -> C e. ( Base ` E ) )
18 2 termccd
 |-  ( ph -> D e. Cat )
19 3 18 1 fuccat
 |-  ( ph -> Q e. Cat )
20 7 19 elind
 |-  ( ph -> Q e. ( U i^i Cat ) )
21 20 16 eleqtrrd
 |-  ( ph -> Q e. ( Base ` E ) )
22 4 13 11 14 5 17 21 8 catciso
 |-  ( ph -> ( L e. ( C I Q ) <-> ( L e. ( ( C Full Q ) i^i ( C Faith Q ) ) /\ ( 1st ` L ) : ( Base ` C ) -1-1-onto-> ( D Func C ) ) ) )
23 10 12 22 mpbir2and
 |-  ( ph -> L e. ( C I Q ) )