| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diagffth.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
diagffth.d |
|- ( ph -> D e. TermCat ) |
| 3 |
|
diagffth.q |
|- Q = ( D FuncCat C ) |
| 4 |
|
diagffth.l |
|- L = ( C DiagFunc D ) |
| 5 |
|
relfunc |
|- Rel ( C Func Q ) |
| 6 |
2
|
termccd |
|- ( ph -> D e. Cat ) |
| 7 |
4 1 6 3
|
diagcl |
|- ( ph -> L e. ( C Func Q ) ) |
| 8 |
|
1st2nd |
|- ( ( Rel ( C Func Q ) /\ L e. ( C Func Q ) ) -> L = <. ( 1st ` L ) , ( 2nd ` L ) >. ) |
| 9 |
5 7 8
|
sylancr |
|- ( ph -> L = <. ( 1st ` L ) , ( 2nd ` L ) >. ) |
| 10 |
7
|
func1st2nd |
|- ( ph -> ( 1st ` L ) ( C Func Q ) ( 2nd ` L ) ) |
| 11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 12 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 13 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
| 14 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
| 15 |
|
eqid |
|- ( D Nat C ) = ( D Nat C ) |
| 16 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> D e. TermCat ) |
| 17 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. Cat ) |
| 18 |
4 11 12 13 14 15 16 17
|
diag2f1o |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` L ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` L ) ` x ) ( D Nat C ) ( ( 1st ` L ) ` y ) ) ) |
| 19 |
18
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` L ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` L ) ` x ) ( D Nat C ) ( ( 1st ` L ) ` y ) ) ) |
| 20 |
3 15
|
fuchom |
|- ( D Nat C ) = ( Hom ` Q ) |
| 21 |
11 12 20
|
isffth2 |
|- ( ( 1st ` L ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` L ) <-> ( ( 1st ` L ) ( C Func Q ) ( 2nd ` L ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` L ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` L ) ` x ) ( D Nat C ) ( ( 1st ` L ) ` y ) ) ) ) |
| 22 |
10 19 21
|
sylanbrc |
|- ( ph -> ( 1st ` L ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` L ) ) |
| 23 |
|
df-br |
|- ( ( 1st ` L ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` L ) <-> <. ( 1st ` L ) , ( 2nd ` L ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
| 24 |
22 23
|
sylib |
|- ( ph -> <. ( 1st ` L ) , ( 2nd ` L ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
| 25 |
9 24
|
eqeltrd |
|- ( ph -> L e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |