Metamath Proof Explorer


Theorem diagffth

Description: The diagonal functor is a fully faithful functor from a category C to the category of functors from a terminal category to C . (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diagffth.c φ C Cat
diagffth.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
diagffth.q Q = D FuncCat C
diagffth.l L = C Δ func D
Assertion diagffth φ L C Full Q C Faith Q

Proof

Step Hyp Ref Expression
1 diagffth.c φ C Cat
2 diagffth.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
3 diagffth.q Q = D FuncCat C
4 diagffth.l L = C Δ func D
5 relfunc Rel C Func Q
6 2 termccd φ D Cat
7 4 1 6 3 diagcl φ L C Func Q
8 1st2nd Rel C Func Q L C Func Q L = 1 st L 2 nd L
9 5 7 8 sylancr φ L = 1 st L 2 nd L
10 7 func1st2nd φ 1 st L C Func Q 2 nd L
11 eqid Base C = Base C
12 eqid Hom C = Hom C
13 simprl φ x Base C y Base C x Base C
14 simprr φ x Base C y Base C y Base C
15 eqid D Nat C = D Nat C
16 2 adantr Could not format ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> D e. TermCat ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> D e. TermCat ) with typecode |-
17 1 adantr φ x Base C y Base C C Cat
18 4 11 12 13 14 15 16 17 diag2f1o φ x Base C y Base C x 2 nd L y : x Hom C y 1-1 onto 1 st L x D Nat C 1 st L y
19 18 ralrimivva φ x Base C y Base C x 2 nd L y : x Hom C y 1-1 onto 1 st L x D Nat C 1 st L y
20 3 15 fuchom D Nat C = Hom Q
21 11 12 20 isffth2 1 st L C Full Q C Faith Q 2 nd L 1 st L C Func Q 2 nd L x Base C y Base C x 2 nd L y : x Hom C y 1-1 onto 1 st L x D Nat C 1 st L y
22 10 19 21 sylanbrc φ 1 st L C Full Q C Faith Q 2 nd L
23 df-br 1 st L C Full Q C Faith Q 2 nd L 1 st L 2 nd L C Full Q C Faith Q
24 22 23 sylib φ 1 st L 2 nd L C Full Q C Faith Q
25 9 24 eqeltrd φ L C Full Q C Faith Q