Description: The diagonal functor is an isomorphism from a category C to the category of functors from a terminal category to C .
It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of ( D evalF C ) , i.e., U. ran ( 1st( <. D , Q >. curryF ( ( D evalF C ) o.func ( D swapF Q ) ) ) ) .
(Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagffth.c | ||
| diagffth.d | No typesetting found for |- ( ph -> D e. TermCat ) with typecode |- | ||
| diagffth.q | |||
| diagciso.e | |||
| diagciso.u | |||
| diagciso.c | |||
| diagciso.1 | |||
| diagciso.i | |||
| diagciso.l | |||
| Assertion | diagciso |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagffth.c | ||
| 2 | diagffth.d | Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |- | |
| 3 | diagffth.q | ||
| 4 | diagciso.e | ||
| 5 | diagciso.u | ||
| 6 | diagciso.c | ||
| 7 | diagciso.1 | ||
| 8 | diagciso.i | ||
| 9 | diagciso.l | ||
| 10 | 1 2 3 9 | diagffth | |
| 11 | eqid | ||
| 12 | 11 2 1 9 | diag1f1o | |
| 13 | eqid | ||
| 14 | 3 | fucbas | |
| 15 | 6 1 | elind | |
| 16 | 4 13 5 | catcbas | |
| 17 | 15 16 | eleqtrrd | |
| 18 | 2 | termccd | |
| 19 | 3 18 1 | fuccat | |
| 20 | 7 19 | elind | |
| 21 | 20 16 | eleqtrrd | |
| 22 | 4 13 11 14 5 17 21 8 | catciso | |
| 23 | 10 12 22 | mpbir2and |