Description: The diagonal functor is an isomorphism from a category C to the category of functors from a terminal category to C .
It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of ( D evalF C ) , i.e., U. ran ( 1st( <. D , Q >. curryF ( ( D evalF C ) o.func ( D swapF Q ) ) ) ) .
(Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagffth.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| diagffth.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| diagffth.q | ⊢ 𝑄 = ( 𝐷 FuncCat 𝐶 ) | ||
| diagciso.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | ||
| diagciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| diagciso.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
| diagciso.1 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑈 ) | ||
| diagciso.i | ⊢ 𝐼 = ( Iso ‘ 𝐸 ) | ||
| diagciso.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | ||
| Assertion | diagciso | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 𝐼 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagffth.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | diagffth.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 3 | diagffth.q | ⊢ 𝑄 = ( 𝐷 FuncCat 𝐶 ) | |
| 4 | diagciso.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | |
| 5 | diagciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | diagciso.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
| 7 | diagciso.1 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑈 ) | |
| 8 | diagciso.i | ⊢ 𝐼 = ( Iso ‘ 𝐸 ) | |
| 9 | diagciso.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 10 | 1 2 3 9 | diagffth | ⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 12 | 11 2 1 9 | diag1f1o | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 𝐷 Func 𝐶 ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 14 | 3 | fucbas | ⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ 𝑄 ) |
| 15 | 6 1 | elind | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑈 ∩ Cat ) ) |
| 16 | 4 13 5 | catcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 17 | 15 16 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐸 ) ) |
| 18 | 2 | termccd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 19 | 3 18 1 | fuccat | ⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 20 | 7 19 | elind | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑈 ∩ Cat ) ) |
| 21 | 20 16 | eleqtrrd | ⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐸 ) ) |
| 22 | 4 13 11 14 5 17 21 8 | catciso | ⊢ ( 𝜑 → ( 𝐿 ∈ ( 𝐶 𝐼 𝑄 ) ↔ ( 𝐿 ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) ∧ ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 𝐷 Func 𝐶 ) ) ) ) |
| 23 | 10 12 22 | mpbir2and | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 𝐼 𝑄 ) ) |