Metamath Proof Explorer


Theorem diagciso

Description: The diagonal functor is an isomorphism from a category C to the category of functors from a terminal category to C .

It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of ( D evalF C ) , i.e., U. ran ( 1st( <. D , Q >. curryF ( ( D evalF C ) o.func ( D swapF Q ) ) ) ) .

(Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diagffth.c ( 𝜑𝐶 ∈ Cat )
diagffth.d ( 𝜑𝐷 ∈ TermCat )
diagffth.q 𝑄 = ( 𝐷 FuncCat 𝐶 )
diagciso.e 𝐸 = ( CatCat ‘ 𝑈 )
diagciso.u ( 𝜑𝑈𝑉 )
diagciso.c ( 𝜑𝐶𝑈 )
diagciso.1 ( 𝜑𝑄𝑈 )
diagciso.i 𝐼 = ( Iso ‘ 𝐸 )
diagciso.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
Assertion diagciso ( 𝜑𝐿 ∈ ( 𝐶 𝐼 𝑄 ) )

Proof

Step Hyp Ref Expression
1 diagffth.c ( 𝜑𝐶 ∈ Cat )
2 diagffth.d ( 𝜑𝐷 ∈ TermCat )
3 diagffth.q 𝑄 = ( 𝐷 FuncCat 𝐶 )
4 diagciso.e 𝐸 = ( CatCat ‘ 𝑈 )
5 diagciso.u ( 𝜑𝑈𝑉 )
6 diagciso.c ( 𝜑𝐶𝑈 )
7 diagciso.1 ( 𝜑𝑄𝑈 )
8 diagciso.i 𝐼 = ( Iso ‘ 𝐸 )
9 diagciso.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
10 1 2 3 9 diagffth ( 𝜑𝐿 ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) )
11 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
12 11 2 1 9 diag1f1o ( 𝜑 → ( 1st𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 𝐷 Func 𝐶 ) )
13 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
14 3 fucbas ( 𝐷 Func 𝐶 ) = ( Base ‘ 𝑄 )
15 6 1 elind ( 𝜑𝐶 ∈ ( 𝑈 ∩ Cat ) )
16 4 13 5 catcbas ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) )
17 15 16 eleqtrrd ( 𝜑𝐶 ∈ ( Base ‘ 𝐸 ) )
18 2 termccd ( 𝜑𝐷 ∈ Cat )
19 3 18 1 fuccat ( 𝜑𝑄 ∈ Cat )
20 7 19 elind ( 𝜑𝑄 ∈ ( 𝑈 ∩ Cat ) )
21 20 16 eleqtrrd ( 𝜑𝑄 ∈ ( Base ‘ 𝐸 ) )
22 4 13 11 14 5 17 21 8 catciso ( 𝜑 → ( 𝐿 ∈ ( 𝐶 𝐼 𝑄 ) ↔ ( 𝐿 ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) ∧ ( 1st𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 𝐷 Func 𝐶 ) ) ) )
23 10 12 22 mpbir2and ( 𝜑𝐿 ∈ ( 𝐶 𝐼 𝑄 ) )