| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag2f1o.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
diag2f1o.a |
|- A = ( Base ` C ) |
| 3 |
|
diag2f1o.h |
|- H = ( Hom ` C ) |
| 4 |
|
diag2f1o.x |
|- ( ph -> X e. A ) |
| 5 |
|
diag2f1o.y |
|- ( ph -> Y e. A ) |
| 6 |
|
diag2f1o.n |
|- N = ( D Nat C ) |
| 7 |
|
diag2f1o.d |
|- ( ph -> D e. TermCat ) |
| 8 |
|
diag2f1o.c |
|- ( ph -> C e. Cat ) |
| 9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 10 |
7
|
termccd |
|- ( ph -> D e. Cat ) |
| 11 |
9
|
istermc2 |
|- ( D e. TermCat <-> ( D e. ThinCat /\ E! z z e. ( Base ` D ) ) ) |
| 12 |
7 11
|
sylib |
|- ( ph -> ( D e. ThinCat /\ E! z z e. ( Base ` D ) ) ) |
| 13 |
12
|
simprd |
|- ( ph -> E! z z e. ( Base ` D ) ) |
| 14 |
|
euex |
|- ( E! z z e. ( Base ` D ) -> E. z z e. ( Base ` D ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> E. z z e. ( Base ` D ) ) |
| 16 |
|
n0 |
|- ( ( Base ` D ) =/= (/) <-> E. z z e. ( Base ` D ) ) |
| 17 |
15 16
|
sylibr |
|- ( ph -> ( Base ` D ) =/= (/) ) |
| 18 |
1 2 9 3 8 10 4 5 17 6
|
diag2f1 |
|- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 19 |
|
f1f |
|- ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) -> ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 21 |
7 9
|
termcbas |
|- ( ph -> E. z ( Base ` D ) = { z } ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) -> E. z ( Base ` D ) = { z } ) |
| 23 |
|
fveq2 |
|- ( f = ( m ` z ) -> ( ( X ( 2nd ` L ) Y ) ` f ) = ( ( X ( 2nd ` L ) Y ) ` ( m ` z ) ) ) |
| 24 |
23
|
eqeq2d |
|- ( f = ( m ` z ) -> ( m = ( ( X ( 2nd ` L ) Y ) ` f ) <-> m = ( ( X ( 2nd ` L ) Y ) ` ( m ` z ) ) ) ) |
| 25 |
4
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> X e. A ) |
| 26 |
5
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> Y e. A ) |
| 27 |
7
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> D e. TermCat ) |
| 28 |
|
simplr |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 29 |
|
vsnid |
|- z e. { z } |
| 30 |
|
simpr |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> ( Base ` D ) = { z } ) |
| 31 |
29 30
|
eleqtrrid |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> z e. ( Base ` D ) ) |
| 32 |
|
eqid |
|- ( m ` z ) = ( m ` z ) |
| 33 |
1 2 3 25 26 6 27 28 9 31 32
|
diag2f1olem |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> ( ( m ` z ) e. ( X H Y ) /\ m = ( ( X ( 2nd ` L ) Y ) ` ( m ` z ) ) ) ) |
| 34 |
33
|
simpld |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> ( m ` z ) e. ( X H Y ) ) |
| 35 |
33
|
simprd |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> m = ( ( X ( 2nd ` L ) Y ) ` ( m ` z ) ) ) |
| 36 |
24 34 35
|
rspcedvdw |
|- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> E. f e. ( X H Y ) m = ( ( X ( 2nd ` L ) Y ) ` f ) ) |
| 37 |
22 36
|
exlimddv |
|- ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) -> E. f e. ( X H Y ) m = ( ( X ( 2nd ` L ) Y ) ` f ) ) |
| 38 |
37
|
ralrimiva |
|- ( ph -> A. m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) E. f e. ( X H Y ) m = ( ( X ( 2nd ` L ) Y ) ` f ) ) |
| 39 |
|
dffo3 |
|- ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) <-> ( ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) /\ A. m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) E. f e. ( X H Y ) m = ( ( X ( 2nd ` L ) Y ) ` f ) ) ) |
| 40 |
20 38 39
|
sylanbrc |
|- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 41 |
|
df-f1o |
|- ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) <-> ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) /\ ( X ( 2nd ` L ) Y ) : ( X H Y ) -onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) ) |
| 42 |
18 40 41
|
sylanbrc |
|- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |