| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag2f1o.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
diag2f1o.a |
|- A = ( Base ` C ) |
| 3 |
|
diag2f1o.h |
|- H = ( Hom ` C ) |
| 4 |
|
diag2f1o.x |
|- ( ph -> X e. A ) |
| 5 |
|
diag2f1o.y |
|- ( ph -> Y e. A ) |
| 6 |
|
diag2f1o.n |
|- N = ( D Nat C ) |
| 7 |
|
diag2f1o.d |
|- ( ph -> D e. TermCat ) |
| 8 |
|
diag2f1olem.m |
|- ( ph -> M e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 9 |
|
diag2f1olem.b |
|- B = ( Base ` D ) |
| 10 |
|
diag2f1olem.z |
|- ( ph -> Z e. B ) |
| 11 |
|
diag2f1olem.f |
|- F = ( M ` Z ) |
| 12 |
6 8
|
nat1st2nd |
|- ( ph -> M e. ( <. ( 1st ` ( ( 1st ` L ) ` X ) ) , ( 2nd ` ( ( 1st ` L ) ` X ) ) >. N <. ( 1st ` ( ( 1st ` L ) ` Y ) ) , ( 2nd ` ( ( 1st ` L ) ` Y ) ) >. ) ) |
| 13 |
6 12 9 3 10
|
natcl |
|- ( ph -> ( M ` Z ) e. ( ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` Z ) H ( ( 1st ` ( ( 1st ` L ) ` Y ) ) ` Z ) ) ) |
| 14 |
6 12
|
natrcl2 |
|- ( ph -> ( 1st ` ( ( 1st ` L ) ` X ) ) ( D Func C ) ( 2nd ` ( ( 1st ` L ) ` X ) ) ) |
| 15 |
14
|
funcrcl3 |
|- ( ph -> C e. Cat ) |
| 16 |
7
|
termccd |
|- ( ph -> D e. Cat ) |
| 17 |
|
eqid |
|- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
| 18 |
1 15 16 2 4 17 9 10
|
diag11 |
|- ( ph -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` Z ) = X ) |
| 19 |
|
eqid |
|- ( ( 1st ` L ) ` Y ) = ( ( 1st ` L ) ` Y ) |
| 20 |
1 15 16 2 5 19 9 10
|
diag11 |
|- ( ph -> ( ( 1st ` ( ( 1st ` L ) ` Y ) ) ` Z ) = Y ) |
| 21 |
18 20
|
oveq12d |
|- ( ph -> ( ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` Z ) H ( ( 1st ` ( ( 1st ` L ) ` Y ) ) ` Z ) ) = ( X H Y ) ) |
| 22 |
13 21
|
eleqtrd |
|- ( ph -> ( M ` Z ) e. ( X H Y ) ) |
| 23 |
11 22
|
eqeltrid |
|- ( ph -> F e. ( X H Y ) ) |
| 24 |
7 6 8 9 10 11
|
termcnatval |
|- ( ph -> M = { <. Z , F >. } ) |
| 25 |
1 2 9 3 15 16 4 5 23
|
diag2 |
|- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( B X. { F } ) ) |
| 26 |
7 9 10
|
termcbas2 |
|- ( ph -> B = { Z } ) |
| 27 |
26
|
xpeq1d |
|- ( ph -> ( B X. { F } ) = ( { Z } X. { F } ) ) |
| 28 |
|
xpsng |
|- ( ( Z e. B /\ F e. ( X H Y ) ) -> ( { Z } X. { F } ) = { <. Z , F >. } ) |
| 29 |
10 23 28
|
syl2anc |
|- ( ph -> ( { Z } X. { F } ) = { <. Z , F >. } ) |
| 30 |
25 27 29
|
3eqtrd |
|- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = { <. Z , F >. } ) |
| 31 |
24 30
|
eqtr4d |
|- ( ph -> M = ( ( X ( 2nd ` L ) Y ) ` F ) ) |
| 32 |
23 31
|
jca |
|- ( ph -> ( F e. ( X H Y ) /\ M = ( ( X ( 2nd ` L ) Y ) ` F ) ) ) |