Metamath Proof Explorer


Theorem termcnatval

Description: Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses termcnatval.c
|- ( ph -> C e. TermCat )
termcnatval.n
|- N = ( C Nat D )
termcnatval.a
|- ( ph -> A e. ( F N G ) )
termcnatval.b
|- B = ( Base ` C )
termcnatval.x
|- ( ph -> X e. B )
termcnatval.r
|- R = ( A ` X )
Assertion termcnatval
|- ( ph -> A = { <. X , R >. } )

Proof

Step Hyp Ref Expression
1 termcnatval.c
 |-  ( ph -> C e. TermCat )
2 termcnatval.n
 |-  N = ( C Nat D )
3 termcnatval.a
 |-  ( ph -> A e. ( F N G ) )
4 termcnatval.b
 |-  B = ( Base ` C )
5 termcnatval.x
 |-  ( ph -> X e. B )
6 termcnatval.r
 |-  R = ( A ` X )
7 2 3 nat1st2nd
 |-  ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) )
8 2 7 4 natfn
 |-  ( ph -> A Fn B )
9 1 4 5 termcbas2
 |-  ( ph -> B = { X } )
10 9 fneq2d
 |-  ( ph -> ( A Fn B <-> A Fn { X } ) )
11 8 10 mpbid
 |-  ( ph -> A Fn { X } )
12 fnsnbg
 |-  ( X e. B -> ( A Fn { X } <-> A = { <. X , ( A ` X ) >. } ) )
13 5 12 syl
 |-  ( ph -> ( A Fn { X } <-> A = { <. X , ( A ` X ) >. } ) )
14 11 13 mpbid
 |-  ( ph -> A = { <. X , ( A ` X ) >. } )
15 6 opeq2i
 |-  <. X , R >. = <. X , ( A ` X ) >.
16 15 sneqi
 |-  { <. X , R >. } = { <. X , ( A ` X ) >. }
17 14 16 eqtr4di
 |-  ( ph -> A = { <. X , R >. } )