Metamath Proof Explorer


Theorem termcnatval

Description: Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses termcnatval.c ( 𝜑𝐶 ∈ TermCat )
termcnatval.n 𝑁 = ( 𝐶 Nat 𝐷 )
termcnatval.a ( 𝜑𝐴 ∈ ( 𝐹 𝑁 𝐺 ) )
termcnatval.b 𝐵 = ( Base ‘ 𝐶 )
termcnatval.x ( 𝜑𝑋𝐵 )
termcnatval.r 𝑅 = ( 𝐴𝑋 )
Assertion termcnatval ( 𝜑𝐴 = { ⟨ 𝑋 , 𝑅 ⟩ } )

Proof

Step Hyp Ref Expression
1 termcnatval.c ( 𝜑𝐶 ∈ TermCat )
2 termcnatval.n 𝑁 = ( 𝐶 Nat 𝐷 )
3 termcnatval.a ( 𝜑𝐴 ∈ ( 𝐹 𝑁 𝐺 ) )
4 termcnatval.b 𝐵 = ( Base ‘ 𝐶 )
5 termcnatval.x ( 𝜑𝑋𝐵 )
6 termcnatval.r 𝑅 = ( 𝐴𝑋 )
7 2 3 nat1st2nd ( 𝜑𝐴 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ 𝑁 ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ) )
8 2 7 4 natfn ( 𝜑𝐴 Fn 𝐵 )
9 1 4 5 termcbas2 ( 𝜑𝐵 = { 𝑋 } )
10 9 fneq2d ( 𝜑 → ( 𝐴 Fn 𝐵𝐴 Fn { 𝑋 } ) )
11 8 10 mpbid ( 𝜑𝐴 Fn { 𝑋 } )
12 fnsnbg ( 𝑋𝐵 → ( 𝐴 Fn { 𝑋 } ↔ 𝐴 = { ⟨ 𝑋 , ( 𝐴𝑋 ) ⟩ } ) )
13 5 12 syl ( 𝜑 → ( 𝐴 Fn { 𝑋 } ↔ 𝐴 = { ⟨ 𝑋 , ( 𝐴𝑋 ) ⟩ } ) )
14 11 13 mpbid ( 𝜑𝐴 = { ⟨ 𝑋 , ( 𝐴𝑋 ) ⟩ } )
15 6 opeq2i 𝑋 , 𝑅 ⟩ = ⟨ 𝑋 , ( 𝐴𝑋 ) ⟩
16 15 sneqi { ⟨ 𝑋 , 𝑅 ⟩ } = { ⟨ 𝑋 , ( 𝐴𝑋 ) ⟩ }
17 14 16 eqtr4di ( 𝜑𝐴 = { ⟨ 𝑋 , 𝑅 ⟩ } )