| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcnatval.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 2 |
|
termcnatval.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 3 |
|
termcnatval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) ) |
| 4 |
|
termcnatval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 5 |
|
termcnatval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
termcnatval.r |
⊢ 𝑅 = ( 𝐴 ‘ 𝑋 ) |
| 7 |
2 3
|
nat1st2nd |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 𝑁 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ) ) |
| 8 |
2 7 4
|
natfn |
⊢ ( 𝜑 → 𝐴 Fn 𝐵 ) |
| 9 |
1 4 5
|
termcbas2 |
⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |
| 10 |
9
|
fneq2d |
⊢ ( 𝜑 → ( 𝐴 Fn 𝐵 ↔ 𝐴 Fn { 𝑋 } ) ) |
| 11 |
8 10
|
mpbid |
⊢ ( 𝜑 → 𝐴 Fn { 𝑋 } ) |
| 12 |
|
fnsnbg |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝐴 Fn { 𝑋 } ↔ 𝐴 = { 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 } ) ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → ( 𝐴 Fn { 𝑋 } ↔ 𝐴 = { 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 } ) ) |
| 14 |
11 13
|
mpbid |
⊢ ( 𝜑 → 𝐴 = { 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 } ) |
| 15 |
6
|
opeq2i |
⊢ 〈 𝑋 , 𝑅 〉 = 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 |
| 16 |
15
|
sneqi |
⊢ { 〈 𝑋 , 𝑅 〉 } = { 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 } |
| 17 |
14 16
|
eqtr4di |
⊢ ( 𝜑 → 𝐴 = { 〈 𝑋 , 𝑅 〉 } ) |