Metamath Proof Explorer


Theorem diag2f1olem

Description: Lemma for diag2f1o . (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diag2f1o.l L = C Δ func D
diag2f1o.a A = Base C
diag2f1o.h H = Hom C
diag2f1o.x φ X A
diag2f1o.y φ Y A
diag2f1o.n N = D Nat C
diag2f1o.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
diag2f1olem.m φ M 1 st L X N 1 st L Y
diag2f1olem.b B = Base D
diag2f1olem.z φ Z B
diag2f1olem.f F = M Z
Assertion diag2f1olem φ F X H Y M = X 2 nd L Y F

Proof

Step Hyp Ref Expression
1 diag2f1o.l L = C Δ func D
2 diag2f1o.a A = Base C
3 diag2f1o.h H = Hom C
4 diag2f1o.x φ X A
5 diag2f1o.y φ Y A
6 diag2f1o.n N = D Nat C
7 diag2f1o.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
8 diag2f1olem.m φ M 1 st L X N 1 st L Y
9 diag2f1olem.b B = Base D
10 diag2f1olem.z φ Z B
11 diag2f1olem.f F = M Z
12 6 8 nat1st2nd φ M 1 st 1 st L X 2 nd 1 st L X N 1 st 1 st L Y 2 nd 1 st L Y
13 6 12 9 3 10 natcl φ M Z 1 st 1 st L X Z H 1 st 1 st L Y Z
14 6 12 natrcl2 φ 1 st 1 st L X D Func C 2 nd 1 st L X
15 14 funcrcl3 φ C Cat
16 7 termccd φ D Cat
17 eqid 1 st L X = 1 st L X
18 1 15 16 2 4 17 9 10 diag11 φ 1 st 1 st L X Z = X
19 eqid 1 st L Y = 1 st L Y
20 1 15 16 2 5 19 9 10 diag11 φ 1 st 1 st L Y Z = Y
21 18 20 oveq12d φ 1 st 1 st L X Z H 1 st 1 st L Y Z = X H Y
22 13 21 eleqtrd φ M Z X H Y
23 11 22 eqeltrid φ F X H Y
24 7 6 8 9 10 11 termcnatval φ M = Z F
25 1 2 9 3 15 16 4 5 23 diag2 φ X 2 nd L Y F = B × F
26 7 9 10 termcbas2 φ B = Z
27 26 xpeq1d φ B × F = Z × F
28 xpsng Z B F X H Y Z × F = Z F
29 10 23 28 syl2anc φ Z × F = Z F
30 25 27 29 3eqtrd φ X 2 nd L Y F = Z F
31 24 30 eqtr4d φ M = X 2 nd L Y F
32 23 31 jca φ F X H Y M = X 2 nd L Y F