Metamath Proof Explorer


Theorem difex2

Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion difex2 BCAVABV

Proof

Step Hyp Ref Expression
1 difexg AVABV
2 ssun2 ABA
3 uncom ABB=BAB
4 undif2 BAB=BA
5 3 4 eqtr2i BA=ABB
6 2 5 sseqtri AABB
7 unexg ABVBCABBV
8 ssexg AABBABBVAV
9 6 7 8 sylancr ABVBCAV
10 9 expcom BCABVAV
11 1 10 impbid2 BCAVABV