Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | difex2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg | |
|
2 | ssun2 | |
|
3 | uncom | |
|
4 | undif2 | |
|
5 | 3 4 | eqtr2i | |
6 | 2 5 | sseqtri | |
7 | unexg | |
|
8 | ssexg | |
|
9 | 6 7 8 | sylancr | |
10 | 9 | expcom | |
11 | 1 10 | impbid2 | |