Description: ( B \ { A } ) is a proper subclass of B if and only if A is a member of B . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsnpss | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notnotb | ||
| 2 | difss | ||
| 3 | 2 | biantrur | |
| 4 | difsnb | ||
| 5 | 4 | necon3bbii | |
| 6 | df-pss | ||
| 7 | 3 5 6 | 3bitr4i | |
| 8 | 1 7 | bitri |