Metamath Proof Explorer


Theorem dihglbcN

Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane W . (Contributed by NM, 26-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglbc.b B=BaseK
dihglbc.g G=glbK
dihglbc.h H=LHypK
dihglbc.i I=DIsoHKW
dihglbc.l ˙=K
Assertion dihglbcN KHLWHSBS¬GS˙WIGS=xSIx

Proof

Step Hyp Ref Expression
1 dihglbc.b B=BaseK
2 dihglbc.g G=glbK
3 dihglbc.h H=LHypK
4 dihglbc.i I=DIsoHKW
5 dihglbc.l ˙=K
6 eqid joinK=joinK
7 eqid meetK=meetK
8 eqid AtomsK=AtomsK
9 eqid ocKW=ocKW
10 eqid LTrnKW=LTrnKW
11 eqid trLKW=trLKW
12 eqid TEndoKW=TEndoKW
13 eqid ιgLTrnKW|gocKW=q=ιgLTrnKW|gocKW=q
14 1 2 3 4 5 6 7 8 9 10 11 12 13 dihglbcpreN KHLWHSBS¬GS˙WIGS=xSIx