Metamath Proof Explorer


Theorem dihmeetlem14N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem14.b B = Base K
dihmeetlem14.l ˙ = K
dihmeetlem14.h H = LHyp K
dihmeetlem14.j ˙ = join K
dihmeetlem14.m ˙ = meet K
dihmeetlem14.a A = Atoms K
dihmeetlem14.u U = DVecH K W
dihmeetlem14.s ˙ = LSSum U
dihmeetlem14.i I = DIsoH K W
Assertion dihmeetlem14N K HL W H Y B p B r A ¬ r ˙ W r ˙ Y Y ˙ p ˙ W I Y ˙ p ˙ I r I p = I Y I p

Proof

Step Hyp Ref Expression
1 dihmeetlem14.b B = Base K
2 dihmeetlem14.l ˙ = K
3 dihmeetlem14.h H = LHyp K
4 dihmeetlem14.j ˙ = join K
5 dihmeetlem14.m ˙ = meet K
6 dihmeetlem14.a A = Atoms K
7 dihmeetlem14.u U = DVecH K W
8 dihmeetlem14.s ˙ = LSSum U
9 dihmeetlem14.i I = DIsoH K W
10 1 2 3 4 5 6 7 8 9 dihmeetlem12N K HL W H Y B p B r A ¬ r ˙ W r ˙ Y Y ˙ p ˙ W I Y ˙ p ˙ I r I p = I Y I p