Metamath Proof Explorer


Theorem dihmeetlem14N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem14.b B=BaseK
dihmeetlem14.l ˙=K
dihmeetlem14.h H=LHypK
dihmeetlem14.j ˙=joinK
dihmeetlem14.m ˙=meetK
dihmeetlem14.a A=AtomsK
dihmeetlem14.u U=DVecHKW
dihmeetlem14.s ˙=LSSumU
dihmeetlem14.i I=DIsoHKW
Assertion dihmeetlem14N KHLWHYBpBrA¬r˙Wr˙YY˙p˙WIY˙p˙IrIp=IYIp

Proof

Step Hyp Ref Expression
1 dihmeetlem14.b B=BaseK
2 dihmeetlem14.l ˙=K
3 dihmeetlem14.h H=LHypK
4 dihmeetlem14.j ˙=joinK
5 dihmeetlem14.m ˙=meetK
6 dihmeetlem14.a A=AtomsK
7 dihmeetlem14.u U=DVecHKW
8 dihmeetlem14.s ˙=LSSumU
9 dihmeetlem14.i I=DIsoHKW
10 1 2 3 4 5 6 7 8 9 dihmeetlem12N KHLWHYBpBrA¬r˙Wr˙YY˙p˙WIY˙p˙IrIp=IYIp