Metamath Proof Explorer


Theorem dihmeetlem12N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem9.b B=BaseK
dihmeetlem9.l ˙=K
dihmeetlem9.h H=LHypK
dihmeetlem9.j ˙=joinK
dihmeetlem9.m ˙=meetK
dihmeetlem9.a A=AtomsK
dihmeetlem9.u U=DVecHKW
dihmeetlem9.s ˙=LSSumU
dihmeetlem9.i I=DIsoHKW
Assertion dihmeetlem12N KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WIX˙Y˙IpIY=IXIY

Proof

Step Hyp Ref Expression
1 dihmeetlem9.b B=BaseK
2 dihmeetlem9.l ˙=K
3 dihmeetlem9.h H=LHypK
4 dihmeetlem9.j ˙=joinK
5 dihmeetlem9.m ˙=meetK
6 dihmeetlem9.a A=AtomsK
7 dihmeetlem9.u U=DVecHKW
8 dihmeetlem9.s ˙=LSSumU
9 dihmeetlem9.i I=DIsoHKW
10 simpl1 KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WKHLWH
11 simpl2 KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WXB
12 simpl3 KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WYB
13 simpr1 KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WpA¬p˙W
14 simpr2 KHLWHXBYBpA¬p˙Wp˙XX˙Y˙Wp˙X
15 simpr3 KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WX˙Y˙W
16 1 2 3 4 5 6 7 8 9 dihmeetlem8N KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WIX˙Y˙p=Ip˙IX˙Y
17 10 11 12 13 14 15 16 syl312anc KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WIX˙Y˙p=Ip˙IX˙Y
18 17 ineq1d KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WIX˙Y˙pIY=Ip˙IX˙YIY
19 1 2 3 4 5 6 7 8 9 dihmeetlem11N KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙pIY=IXIY
20 19 3adantr3 KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WIX˙Y˙pIY=IXIY
21 simpr1l KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WpA
22 1 2 3 4 5 6 7 8 9 dihmeetlem9N KHLWHXBYBpAIp˙IX˙YIY=IX˙Y˙IpIY
23 10 11 12 21 22 syl121anc KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WIp˙IX˙YIY=IX˙Y˙IpIY
24 18 20 23 3eqtr3rd KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WIX˙Y˙IpIY=IXIY