Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem9.b | |
|
dihmeetlem9.l | |
||
dihmeetlem9.h | |
||
dihmeetlem9.j | |
||
dihmeetlem9.m | |
||
dihmeetlem9.a | |
||
dihmeetlem9.u | |
||
dihmeetlem9.s | |
||
dihmeetlem9.i | |
||
Assertion | dihmeetlem12N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem9.b | |
|
2 | dihmeetlem9.l | |
|
3 | dihmeetlem9.h | |
|
4 | dihmeetlem9.j | |
|
5 | dihmeetlem9.m | |
|
6 | dihmeetlem9.a | |
|
7 | dihmeetlem9.u | |
|
8 | dihmeetlem9.s | |
|
9 | dihmeetlem9.i | |
|
10 | simpl1 | |
|
11 | simpl2 | |
|
12 | simpl3 | |
|
13 | simpr1 | |
|
14 | simpr2 | |
|
15 | simpr3 | |
|
16 | 1 2 3 4 5 6 7 8 9 | dihmeetlem8N | |
17 | 10 11 12 13 14 15 16 | syl312anc | |
18 | 17 | ineq1d | |
19 | 1 2 3 4 5 6 7 8 9 | dihmeetlem11N | |
20 | 19 | 3adantr3 | |
21 | simpr1l | |
|
22 | 1 2 3 4 5 6 7 8 9 | dihmeetlem9N | |
23 | 10 11 12 21 22 | syl121anc | |
24 | 18 20 23 | 3eqtr3rd | |