Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem9.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihmeetlem9.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihmeetlem9.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihmeetlem9.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
dihmeetlem9.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dihmeetlem9.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
dihmeetlem9.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihmeetlem9.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
dihmeetlem9.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
12 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
13 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) |
14 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑝 ≤ 𝑋 ) |
15 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
16 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem8N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
17 |
10 11 12 13 14 15 16
|
syl312anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
18 |
17
|
ineq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) = ( ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
19 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem11N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ) ) → ( ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
20 |
19
|
3adantr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
21 |
|
simpr1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑝 ∈ 𝐴 ) |
22 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem9N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) ) |
23 |
10 11 12 21 22
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) ) |
24 |
18 20 23
|
3eqtr3rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ 𝑝 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |