Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem9.b |
|- B = ( Base ` K ) |
2 |
|
dihmeetlem9.l |
|- .<_ = ( le ` K ) |
3 |
|
dihmeetlem9.h |
|- H = ( LHyp ` K ) |
4 |
|
dihmeetlem9.j |
|- .\/ = ( join ` K ) |
5 |
|
dihmeetlem9.m |
|- ./\ = ( meet ` K ) |
6 |
|
dihmeetlem9.a |
|- A = ( Atoms ` K ) |
7 |
|
dihmeetlem9.u |
|- U = ( ( DVecH ` K ) ` W ) |
8 |
|
dihmeetlem9.s |
|- .(+) = ( LSSum ` U ) |
9 |
|
dihmeetlem9.i |
|- I = ( ( DIsoH ` K ) ` W ) |
10 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> X e. B ) |
12 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> Y e. B ) |
13 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( p e. A /\ -. p .<_ W ) ) |
14 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> p .<_ X ) |
15 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( X ./\ Y ) .<_ W ) |
16 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem8N |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( p e. A /\ -. p .<_ W ) /\ ( p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( ( X ./\ Y ) .\/ p ) ) = ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) ) |
17 |
10 11 12 13 14 15 16
|
syl312anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( ( X ./\ Y ) .\/ p ) ) = ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) ) |
18 |
17
|
ineq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( I ` ( ( X ./\ Y ) .\/ p ) ) i^i ( I ` Y ) ) = ( ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) i^i ( I ` Y ) ) ) |
19 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem11N |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( ( I ` ( ( X ./\ Y ) .\/ p ) ) i^i ( I ` Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |
20 |
19
|
3adantr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( I ` ( ( X ./\ Y ) .\/ p ) ) i^i ( I ` Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |
21 |
|
simpr1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> p e. A ) |
22 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem9N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ Y e. B ) /\ p e. A ) -> ( ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) i^i ( I ` Y ) ) = ( ( I ` ( X ./\ Y ) ) .(+) ( ( I ` p ) i^i ( I ` Y ) ) ) ) |
23 |
10 11 12 21 22
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) i^i ( I ` Y ) ) = ( ( I ` ( X ./\ Y ) ) .(+) ( ( I ` p ) i^i ( I ` Y ) ) ) ) |
24 |
18 20 23
|
3eqtr3rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( I ` ( X ./\ Y ) ) .(+) ( ( I ` p ) i^i ( I ` Y ) ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |