| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem9.b |
|- B = ( Base ` K ) |
| 2 |
|
dihmeetlem9.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dihmeetlem9.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dihmeetlem9.j |
|- .\/ = ( join ` K ) |
| 5 |
|
dihmeetlem9.m |
|- ./\ = ( meet ` K ) |
| 6 |
|
dihmeetlem9.a |
|- A = ( Atoms ` K ) |
| 7 |
|
dihmeetlem9.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 8 |
|
dihmeetlem9.s |
|- .(+) = ( LSSum ` U ) |
| 9 |
|
dihmeetlem9.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 10 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 11 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> X e. B ) |
| 12 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> Y e. B ) |
| 13 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( p e. A /\ -. p .<_ W ) ) |
| 14 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> p .<_ X ) |
| 15 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( X ./\ Y ) .<_ W ) |
| 16 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem8N |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( p e. A /\ -. p .<_ W ) /\ ( p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( ( X ./\ Y ) .\/ p ) ) = ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) ) |
| 17 |
10 11 12 13 14 15 16
|
syl312anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( I ` ( ( X ./\ Y ) .\/ p ) ) = ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) ) |
| 18 |
17
|
ineq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( I ` ( ( X ./\ Y ) .\/ p ) ) i^i ( I ` Y ) ) = ( ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) i^i ( I ` Y ) ) ) |
| 19 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem11N |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( ( I ` ( ( X ./\ Y ) .\/ p ) ) i^i ( I ` Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |
| 20 |
19
|
3adantr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( I ` ( ( X ./\ Y ) .\/ p ) ) i^i ( I ` Y ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |
| 21 |
|
simpr1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> p e. A ) |
| 22 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem9N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ Y e. B ) /\ p e. A ) -> ( ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) i^i ( I ` Y ) ) = ( ( I ` ( X ./\ Y ) ) .(+) ( ( I ` p ) i^i ( I ` Y ) ) ) ) |
| 23 |
10 11 12 21 22
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( ( I ` p ) .(+) ( I ` ( X ./\ Y ) ) ) i^i ( I ` Y ) ) = ( ( I ` ( X ./\ Y ) ) .(+) ( ( I ` p ) i^i ( I ` Y ) ) ) ) |
| 24 |
18 20 23
|
3eqtr3rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X /\ ( X ./\ Y ) .<_ W ) ) -> ( ( I ` ( X ./\ Y ) ) .(+) ( ( I ` p ) i^i ( I ` Y ) ) ) = ( ( I ` X ) i^i ( I ` Y ) ) ) |