Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem13.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihmeetlem13.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihmeetlem13.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihmeetlem13.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dihmeetlem13.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
dihmeetlem13.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dihmeetlem13.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihmeetlem13.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihmeetlem13.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
10 |
|
dihmeetlem13.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dihmeetlem13.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
dihmeetlem13.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
13 |
|
dihmeetlem13.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑄 ) |
14 |
|
dihmeetlem13.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑅 ) |
15 |
5 10
|
dihvalrel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( 𝐼 ‘ 𝑄 ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → Rel ( 𝐼 ‘ 𝑄 ) ) |
17 |
|
relin1 |
⊢ ( Rel ( 𝐼 ‘ 𝑄 ) → Rel ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → Rel ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ) |
19 |
|
elin |
⊢ ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ↔ ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑅 ) ) ) |
20 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
22 |
|
vex |
⊢ 𝑓 ∈ V |
23 |
|
vex |
⊢ 𝑠 ∈ V |
24 |
2 4 5 6 7 8 10 13 22 23
|
dihopelvalcqat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ) ) |
25 |
20 21 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ) ) |
26 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
27 |
2 4 5 6 7 8 10 14 22 23
|
dihopelvalcqat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑅 ) ↔ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) |
28 |
20 26 27
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑅 ) ↔ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) |
29 |
25 28
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑅 ) ) ↔ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) ) |
30 |
19 29
|
syl5bb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ↔ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) ) |
31 |
|
simprll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → 𝑓 = ( 𝑠 ‘ 𝐹 ) ) |
32 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → 𝑄 ≠ 𝑅 ) |
33 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
34 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
35 |
2 4 5 6
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
36 |
34 35
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
37 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
38 |
2 4 5 7 13
|
ltrniotaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) = 𝑄 ) |
39 |
34 36 37 38
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝐹 ‘ 𝑃 ) = 𝑄 ) |
40 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
41 |
2 4 5 7 14
|
ltrniotaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) = 𝑅 ) |
42 |
34 36 40 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝐺 ‘ 𝑃 ) = 𝑅 ) |
43 |
39 42
|
eqeq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ↔ 𝑄 = 𝑅 ) ) |
44 |
33 43
|
syl5ib |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝐹 = 𝐺 → 𝑄 = 𝑅 ) ) |
45 |
44
|
necon3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝑄 ≠ 𝑅 → 𝐹 ≠ 𝐺 ) ) |
46 |
32 45
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → 𝐹 ≠ 𝐺 ) |
47 |
|
simp2ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑓 = ( 𝑠 ‘ 𝐹 ) ) |
48 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑓 = ( 𝑠 ‘ 𝐺 ) ) |
49 |
47 48
|
eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑠 ‘ 𝐹 ) = ( 𝑠 ‘ 𝐺 ) ) |
50 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
51 |
|
simp2rr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑠 ∈ 𝐸 ) |
52 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑠 ≠ 𝑂 ) |
53 |
50 35
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
54 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
55 |
2 4 5 7 13
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
56 |
50 53 54 55
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝐹 ∈ 𝑇 ) |
57 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
58 |
2 4 5 7 14
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
59 |
50 53 57 58
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝐺 ∈ 𝑇 ) |
60 |
1 5 7 8 9
|
tendospcanN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑠 ‘ 𝐹 ) = ( 𝑠 ‘ 𝐺 ) ↔ 𝐹 = 𝐺 ) ) |
61 |
50 51 52 56 59 60
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝑠 ‘ 𝐹 ) = ( 𝑠 ‘ 𝐺 ) ↔ 𝐹 = 𝐺 ) ) |
62 |
49 61
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝐹 = 𝐺 ) |
63 |
62
|
3expia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝑠 ≠ 𝑂 → 𝐹 = 𝐺 ) ) |
64 |
63
|
necon1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝐹 ≠ 𝐺 → 𝑠 = 𝑂 ) ) |
65 |
46 64
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → 𝑠 = 𝑂 ) |
66 |
65
|
fveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝑠 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) |
67 |
34 36 37 55
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → 𝐹 ∈ 𝑇 ) |
68 |
9 1
|
tendo02 |
⊢ ( 𝐹 ∈ 𝑇 → ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
69 |
67 68
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
70 |
31 66 69
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → 𝑓 = ( I ↾ 𝐵 ) ) |
71 |
70 65
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) → ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) |
72 |
71
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( ( ( 𝑓 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) → ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) ) |
73 |
30 72
|
sylbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) → ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) ) |
74 |
|
opex |
⊢ 〈 𝑓 , 𝑠 〉 ∈ V |
75 |
74
|
elsn |
⊢ ( 〈 𝑓 , 𝑠 〉 ∈ { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ↔ 〈 𝑓 , 𝑠 〉 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |
76 |
22 23
|
opth |
⊢ ( 〈 𝑓 , 𝑠 〉 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ↔ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) |
77 |
75 76
|
bitr2i |
⊢ ( ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ↔ 〈 𝑓 , 𝑠 〉 ∈ { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ) |
78 |
1 5 7 11 12 9
|
dvh0g |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |
79 |
78
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → 0 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |
80 |
79
|
sneqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → { 0 } = { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ) |
81 |
80
|
eleq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 〈 𝑓 , 𝑠 〉 ∈ { 0 } ↔ 〈 𝑓 , 𝑠 〉 ∈ { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ) ) |
82 |
77 81
|
bitr4id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ↔ 〈 𝑓 , 𝑠 〉 ∈ { 0 } ) ) |
83 |
73 82
|
sylibd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) → 〈 𝑓 , 𝑠 〉 ∈ { 0 } ) ) |
84 |
18 83
|
relssdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ⊆ { 0 } ) |
85 |
5 11 20
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → 𝑈 ∈ LMod ) |
86 |
|
simp2ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → 𝑄 ∈ 𝐴 ) |
87 |
1 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
88 |
86 87
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → 𝑄 ∈ 𝐵 ) |
89 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
90 |
1 5 10 11 89
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
91 |
20 88 90
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
92 |
|
simp2rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → 𝑅 ∈ 𝐴 ) |
93 |
1 4
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
94 |
92 93
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → 𝑅 ∈ 𝐵 ) |
95 |
1 5 10 11 89
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
96 |
20 94 95
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 𝐼 ‘ 𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
97 |
89
|
lssincl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐼 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
98 |
85 91 96 97
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
99 |
12 89
|
lss0ss |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) → { 0 } ⊆ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ) |
100 |
85 98 99
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → { 0 } ⊆ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) ) |
101 |
84 100
|
eqssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ 𝑅 ) ) = { 0 } ) |