Metamath Proof Explorer


Theorem dihmeetlem13N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem13.b 𝐵 = ( Base ‘ 𝐾 )
dihmeetlem13.l = ( le ‘ 𝐾 )
dihmeetlem13.j = ( join ‘ 𝐾 )
dihmeetlem13.a 𝐴 = ( Atoms ‘ 𝐾 )
dihmeetlem13.h 𝐻 = ( LHyp ‘ 𝐾 )
dihmeetlem13.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihmeetlem13.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihmeetlem13.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihmeetlem13.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
dihmeetlem13.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihmeetlem13.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihmeetlem13.z 0 = ( 0g𝑈 )
dihmeetlem13.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
dihmeetlem13.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
Assertion dihmeetlem13N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) = { 0 } )

Proof

Step Hyp Ref Expression
1 dihmeetlem13.b 𝐵 = ( Base ‘ 𝐾 )
2 dihmeetlem13.l = ( le ‘ 𝐾 )
3 dihmeetlem13.j = ( join ‘ 𝐾 )
4 dihmeetlem13.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dihmeetlem13.h 𝐻 = ( LHyp ‘ 𝐾 )
6 dihmeetlem13.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
7 dihmeetlem13.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 dihmeetlem13.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
9 dihmeetlem13.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
10 dihmeetlem13.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
11 dihmeetlem13.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
12 dihmeetlem13.z 0 = ( 0g𝑈 )
13 dihmeetlem13.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
14 dihmeetlem13.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
15 5 10 dihvalrel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( 𝐼𝑄 ) )
16 15 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → Rel ( 𝐼𝑄 ) )
17 relin1 ( Rel ( 𝐼𝑄 ) → Rel ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) )
18 16 17 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → Rel ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) )
19 elin ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) ↔ ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑄 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑅 ) ) )
20 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
21 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
22 vex 𝑓 ∈ V
23 vex 𝑠 ∈ V
24 2 4 5 6 7 8 10 13 22 23 dihopelvalcqat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑄 ) ↔ ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ) )
25 20 21 24 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑄 ) ↔ ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ) )
26 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
27 2 4 5 6 7 8 10 14 22 23 dihopelvalcqat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑅 ) ↔ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) )
28 20 26 27 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑅 ) ↔ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) )
29 25 28 anbi12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑄 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑅 ) ) ↔ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) )
30 19 29 syl5bb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) ↔ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) )
31 simprll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → 𝑓 = ( 𝑠𝐹 ) )
32 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → 𝑄𝑅 )
33 fveq1 ( 𝐹 = 𝐺 → ( 𝐹𝑃 ) = ( 𝐺𝑃 ) )
34 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
35 2 4 5 6 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
36 34 35 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
37 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
38 2 4 5 7 13 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑃 ) = 𝑄 )
39 34 36 37 38 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝐹𝑃 ) = 𝑄 )
40 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
41 2 4 5 7 14 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐺𝑃 ) = 𝑅 )
42 34 36 40 41 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝐺𝑃 ) = 𝑅 )
43 39 42 eqeq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ↔ 𝑄 = 𝑅 ) )
44 33 43 syl5ib ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝐹 = 𝐺𝑄 = 𝑅 ) )
45 44 necon3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝑄𝑅𝐹𝐺 ) )
46 32 45 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → 𝐹𝐺 )
47 simp2ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑓 = ( 𝑠𝐹 ) )
48 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑓 = ( 𝑠𝐺 ) )
49 47 48 eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝑠𝐹 ) = ( 𝑠𝐺 ) )
50 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
51 simp2rr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑠𝐸 )
52 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑠𝑂 )
53 50 35 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
54 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
55 2 4 5 7 13 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )
56 50 53 54 55 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝐹𝑇 )
57 simp12r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
58 2 4 5 7 14 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐺𝑇 )
59 50 53 57 58 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝐺𝑇 )
60 1 5 7 8 9 tendospcanN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑠𝐸𝑠𝑂 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑠𝐹 ) = ( 𝑠𝐺 ) ↔ 𝐹 = 𝐺 ) )
61 50 51 52 56 59 60 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( 𝑠𝐹 ) = ( 𝑠𝐺 ) ↔ 𝐹 = 𝐺 ) )
62 49 61 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝐹 = 𝐺 )
63 62 3expia ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝑠𝑂𝐹 = 𝐺 ) )
64 63 necon1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝐹𝐺𝑠 = 𝑂 ) )
65 46 64 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → 𝑠 = 𝑂 )
66 65 fveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝑠𝐹 ) = ( 𝑂𝐹 ) )
67 34 36 37 55 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → 𝐹𝑇 )
68 9 1 tendo02 ( 𝐹𝑇 → ( 𝑂𝐹 ) = ( I ↾ 𝐵 ) )
69 67 68 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝑂𝐹 ) = ( I ↾ 𝐵 ) )
70 31 66 69 3eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → 𝑓 = ( I ↾ 𝐵 ) )
71 70 65 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) ∧ ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) ) → ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) )
72 71 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ( ( 𝑓 = ( 𝑠𝐹 ) ∧ 𝑠𝐸 ) ∧ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ) → ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) )
73 30 72 sylbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) → ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) )
74 opex 𝑓 , 𝑠 ⟩ ∈ V
75 74 elsn ( ⟨ 𝑓 , 𝑠 ⟩ ∈ { ⟨ ( I ↾ 𝐵 ) , 𝑂 ⟩ } ↔ ⟨ 𝑓 , 𝑠 ⟩ = ⟨ ( I ↾ 𝐵 ) , 𝑂 ⟩ )
76 22 23 opth ( ⟨ 𝑓 , 𝑠 ⟩ = ⟨ ( I ↾ 𝐵 ) , 𝑂 ⟩ ↔ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) )
77 75 76 bitr2i ( ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ↔ ⟨ 𝑓 , 𝑠 ⟩ ∈ { ⟨ ( I ↾ 𝐵 ) , 𝑂 ⟩ } )
78 1 5 7 11 12 9 dvh0g ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 0 = ⟨ ( I ↾ 𝐵 ) , 𝑂 ⟩ )
79 78 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → 0 = ⟨ ( I ↾ 𝐵 ) , 𝑂 ⟩ )
80 79 sneqd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → { 0 } = { ⟨ ( I ↾ 𝐵 ) , 𝑂 ⟩ } )
81 80 eleq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ { 0 } ↔ ⟨ 𝑓 , 𝑠 ⟩ ∈ { ⟨ ( I ↾ 𝐵 ) , 𝑂 ⟩ } ) )
82 77 81 bitr4id ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ↔ ⟨ 𝑓 , 𝑠 ⟩ ∈ { 0 } ) )
83 73 82 sylibd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ { 0 } ) )
84 18 83 relssdv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) ⊆ { 0 } )
85 5 11 20 dvhlmod ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → 𝑈 ∈ LMod )
86 simp2ll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → 𝑄𝐴 )
87 1 4 atbase ( 𝑄𝐴𝑄𝐵 )
88 86 87 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → 𝑄𝐵 )
89 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
90 1 5 10 11 89 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐵 ) → ( 𝐼𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
91 20 88 90 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( 𝐼𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
92 simp2rl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → 𝑅𝐴 )
93 1 4 atbase ( 𝑅𝐴𝑅𝐵 )
94 92 93 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → 𝑅𝐵 )
95 1 5 10 11 89 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑅𝐵 ) → ( 𝐼𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) )
96 20 94 95 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( 𝐼𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) )
97 89 lssincl ( ( 𝑈 ∈ LMod ∧ ( 𝐼𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝐼𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
98 85 91 96 97 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
99 12 89 lss0ss ( ( 𝑈 ∈ LMod ∧ ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) → { 0 } ⊆ ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) )
100 85 98 99 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → { 0 } ⊆ ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) )
101 84 100 eqssd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑄𝑅 ) → ( ( 𝐼𝑄 ) ∩ ( 𝐼𝑅 ) ) = { 0 } )