Metamath Proof Explorer


Theorem dihord10

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihjust.b B = Base K
dihjust.l ˙ = K
dihjust.j ˙ = join K
dihjust.m ˙ = meet K
dihjust.a A = Atoms K
dihjust.h H = LHyp K
dihjust.i I = DIsoB K W
dihjust.J J = DIsoC K W
dihjust.u U = DVecH K W
dihjust.s ˙ = LSSum U
dihord2c.t T = LTrn K W
dihord2c.r R = trL K W
dihord2c.o O = h T I B
dihord2.p P = oc K W
dihord2.e E = TEndo K W
dihord2.d + ˙ = + U
dihord2.g G = ι h T | h P = N
Assertion dihord10 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O R f ˙ Y ˙ W

Proof

Step Hyp Ref Expression
1 dihjust.b B = Base K
2 dihjust.l ˙ = K
3 dihjust.j ˙ = join K
4 dihjust.m ˙ = meet K
5 dihjust.a A = Atoms K
6 dihjust.h H = LHyp K
7 dihjust.i I = DIsoB K W
8 dihjust.J J = DIsoC K W
9 dihjust.u U = DVecH K W
10 dihjust.s ˙ = LSSum U
11 dihord2c.t T = LTrn K W
12 dihord2c.r R = trL K W
13 dihord2c.o O = h T I B
14 dihord2.p P = oc K W
15 dihord2.e E = TEndo K W
16 dihord2.d + ˙ = + U
17 dihord2.g G = ι h T | h P = N
18 simp11 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O K HL W H
19 simp12 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O Q A ¬ Q ˙ W
20 simp13 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O N A ¬ N ˙ W
21 simp31l K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O s E
22 simp31r K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O g T
23 simp33 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O f O = s G s + ˙ g O
24 1 2 5 6 14 13 11 15 9 16 17 dihordlem7b K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W s E g T f O = s G s + ˙ g O f = g O = s
25 24 simpld K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W s E g T f O = s G s + ˙ g O f = g
26 18 19 20 21 22 23 25 syl123anc K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O f = g
27 26 fveq2d K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O R f = R g
28 simp32 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O R g ˙ Y ˙ W
29 27 28 eqbrtrd K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W f T R f ˙ X ˙ W s E g T R g ˙ Y ˙ W f O = s G s + ˙ g O R f ˙ Y ˙ W