Step |
Hyp |
Ref |
Expression |
1 |
|
dihjust.b |
|- B = ( Base ` K ) |
2 |
|
dihjust.l |
|- .<_ = ( le ` K ) |
3 |
|
dihjust.j |
|- .\/ = ( join ` K ) |
4 |
|
dihjust.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihjust.a |
|- A = ( Atoms ` K ) |
6 |
|
dihjust.h |
|- H = ( LHyp ` K ) |
7 |
|
dihjust.i |
|- I = ( ( DIsoB ` K ) ` W ) |
8 |
|
dihjust.J |
|- J = ( ( DIsoC ` K ) ` W ) |
9 |
|
dihjust.u |
|- U = ( ( DVecH ` K ) ` W ) |
10 |
|
dihjust.s |
|- .(+) = ( LSSum ` U ) |
11 |
|
dihord2c.t |
|- T = ( ( LTrn ` K ) ` W ) |
12 |
|
dihord2c.r |
|- R = ( ( trL ` K ) ` W ) |
13 |
|
dihord2c.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
14 |
|
dihord2.p |
|- P = ( ( oc ` K ) ` W ) |
15 |
|
dihord2.e |
|- E = ( ( TEndo ` K ) ` W ) |
16 |
|
dihord2.d |
|- .+ = ( +g ` U ) |
17 |
|
dihord2.g |
|- G = ( iota_ h e. T ( h ` P ) = N ) |
18 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
20 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( N e. A /\ -. N .<_ W ) ) |
21 |
|
simp31l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> s e. E ) |
22 |
|
simp31r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> g e. T ) |
23 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) |
24 |
1 2 5 6 14 13 11 15 9 16 17
|
dihordlem7b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( f = g /\ O = s ) ) |
25 |
24
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> f = g ) |
26 |
18 19 20 21 22 23 25
|
syl123anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> f = g ) |
27 |
26
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( R ` f ) = ( R ` g ) ) |
28 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( R ` g ) .<_ ( Y ./\ W ) ) |
29 |
27 28
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( R ` f ) .<_ ( Y ./\ W ) ) |