Metamath Proof Explorer


Theorem dihord10

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihjust.b
|- B = ( Base ` K )
dihjust.l
|- .<_ = ( le ` K )
dihjust.j
|- .\/ = ( join ` K )
dihjust.m
|- ./\ = ( meet ` K )
dihjust.a
|- A = ( Atoms ` K )
dihjust.h
|- H = ( LHyp ` K )
dihjust.i
|- I = ( ( DIsoB ` K ) ` W )
dihjust.J
|- J = ( ( DIsoC ` K ) ` W )
dihjust.u
|- U = ( ( DVecH ` K ) ` W )
dihjust.s
|- .(+) = ( LSSum ` U )
dihord2c.t
|- T = ( ( LTrn ` K ) ` W )
dihord2c.r
|- R = ( ( trL ` K ) ` W )
dihord2c.o
|- O = ( h e. T |-> ( _I |` B ) )
dihord2.p
|- P = ( ( oc ` K ) ` W )
dihord2.e
|- E = ( ( TEndo ` K ) ` W )
dihord2.d
|- .+ = ( +g ` U )
dihord2.g
|- G = ( iota_ h e. T ( h ` P ) = N )
Assertion dihord10
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( R ` f ) .<_ ( Y ./\ W ) )

Proof

Step Hyp Ref Expression
1 dihjust.b
 |-  B = ( Base ` K )
2 dihjust.l
 |-  .<_ = ( le ` K )
3 dihjust.j
 |-  .\/ = ( join ` K )
4 dihjust.m
 |-  ./\ = ( meet ` K )
5 dihjust.a
 |-  A = ( Atoms ` K )
6 dihjust.h
 |-  H = ( LHyp ` K )
7 dihjust.i
 |-  I = ( ( DIsoB ` K ) ` W )
8 dihjust.J
 |-  J = ( ( DIsoC ` K ) ` W )
9 dihjust.u
 |-  U = ( ( DVecH ` K ) ` W )
10 dihjust.s
 |-  .(+) = ( LSSum ` U )
11 dihord2c.t
 |-  T = ( ( LTrn ` K ) ` W )
12 dihord2c.r
 |-  R = ( ( trL ` K ) ` W )
13 dihord2c.o
 |-  O = ( h e. T |-> ( _I |` B ) )
14 dihord2.p
 |-  P = ( ( oc ` K ) ` W )
15 dihord2.e
 |-  E = ( ( TEndo ` K ) ` W )
16 dihord2.d
 |-  .+ = ( +g ` U )
17 dihord2.g
 |-  G = ( iota_ h e. T ( h ` P ) = N )
18 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( K e. HL /\ W e. H ) )
19 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
20 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( N e. A /\ -. N .<_ W ) )
21 simp31l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> s e. E )
22 simp31r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> g e. T )
23 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) )
24 1 2 5 6 14 13 11 15 9 16 17 dihordlem7b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( f = g /\ O = s ) )
25 24 simpld
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> f = g )
26 18 19 20 21 22 23 25 syl123anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> f = g )
27 26 fveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( R ` f ) = ( R ` g ) )
28 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( R ` g ) .<_ ( Y ./\ W ) )
29 27 28 eqbrtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ ( Y ./\ W ) /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( R ` f ) .<_ ( Y ./\ W ) )