Step |
Hyp |
Ref |
Expression |
1 |
|
dihjust.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjust.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihjust.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihjust.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihjust.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihjust.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihjust.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjust.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihjust.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihjust.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
11 |
|
dihord2c.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
dihord2c.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
dihord2c.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
14 |
|
dihord2.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
dihord2.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
dihord2.d |
⊢ + = ( +g ‘ 𝑈 ) |
17 |
|
dihord2.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑁 ) |
18 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
20 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) |
21 |
|
simp31l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑠 ∈ 𝐸 ) |
22 |
|
simp31r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑔 ∈ 𝑇 ) |
23 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) |
24 |
1 2 5 6 14 13 11 15 9 16 17
|
dihordlem7b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑓 = 𝑔 ∧ 𝑂 = 𝑠 ) ) |
25 |
24
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑓 = 𝑔 ) |
26 |
18 19 20 21 22 23 25
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑓 = 𝑔 ) |
27 |
26
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑅 ‘ 𝑓 ) = ( 𝑅 ‘ 𝑔 ) ) |
28 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ) |
29 |
27 28
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑌 ∧ 𝑊 ) ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑌 ∧ 𝑊 ) ) |