Metamath Proof Explorer


Theorem dihord10

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihjust.b 𝐵 = ( Base ‘ 𝐾 )
dihjust.l = ( le ‘ 𝐾 )
dihjust.j = ( join ‘ 𝐾 )
dihjust.m = ( meet ‘ 𝐾 )
dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjust.s = ( LSSum ‘ 𝑈 )
dihord2c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihord2c.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dihord2c.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
dihord2.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihord2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihord2.d + = ( +g𝑈 )
dihord2.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
Assertion dihord10 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑅𝑓 ) ( 𝑌 𝑊 ) )

Proof

Step Hyp Ref Expression
1 dihjust.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjust.l = ( le ‘ 𝐾 )
3 dihjust.j = ( join ‘ 𝐾 )
4 dihjust.m = ( meet ‘ 𝐾 )
5 dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
9 dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 dihjust.s = ( LSSum ‘ 𝑈 )
11 dihord2c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
12 dihord2c.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
13 dihord2c.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
14 dihord2.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
15 dihord2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
16 dihord2.d + = ( +g𝑈 )
17 dihord2.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
18 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
20 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) )
21 simp31l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑠𝐸 )
22 simp31r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑔𝑇 )
23 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) )
24 1 2 5 6 14 13 11 15 9 16 17 dihordlem7b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑓 = 𝑔𝑂 = 𝑠 ) )
25 24 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑓 = 𝑔 )
26 18 19 20 21 22 23 25 syl123anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑓 = 𝑔 )
27 26 fveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑅𝑓 ) = ( 𝑅𝑔 ) )
28 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑅𝑔 ) ( 𝑌 𝑊 ) )
29 27 28 eqbrtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑌 𝑊 ) ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑅𝑓 ) ( 𝑌 𝑊 ) )