Metamath Proof Explorer


Theorem dihord11c

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihjust.b 𝐵 = ( Base ‘ 𝐾 )
dihjust.l = ( le ‘ 𝐾 )
dihjust.j = ( join ‘ 𝐾 )
dihjust.m = ( meet ‘ 𝐾 )
dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjust.s = ( LSSum ‘ 𝑈 )
dihord2c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihord2c.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dihord2c.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
dihord2.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihord2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihord2.d + = ( +g𝑈 )
dihord2.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
Assertion dihord11c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ∃ 𝑦 ∈ ( 𝐽𝑁 ) ∃ 𝑧 ∈ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ⟨ 𝑓 , 𝑂 ⟩ = ( 𝑦 + 𝑧 ) )

Proof

Step Hyp Ref Expression
1 dihjust.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjust.l = ( le ‘ 𝐾 )
3 dihjust.j = ( join ‘ 𝐾 )
4 dihjust.m = ( meet ‘ 𝐾 )
5 dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
9 dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 dihjust.s = ( LSSum ‘ 𝑈 )
11 dihord2c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
12 dihord2c.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
13 dihord2c.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
14 dihord2.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
15 dihord2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
16 dihord2.d + = ( +g𝑈 )
17 dihord2.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
18 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) )
19 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑋𝐵𝑌𝐵 ) )
20 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
21 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑓𝑇 )
22 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑅𝑓 ) ( 𝑋 𝑊 ) )
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 dihord11b ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ ∈ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
24 18 19 20 21 22 23 syl32anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ ∈ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
25 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
26 6 9 25 dvhlmod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑈 ∈ LMod )
27 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
28 27 lsssssubg ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
29 26 28 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
30 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) )
31 2 5 6 9 8 27 diclss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) → ( 𝐽𝑁 ) ∈ ( LSubSp ‘ 𝑈 ) )
32 25 30 31 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝐽𝑁 ) ∈ ( LSubSp ‘ 𝑈 ) )
33 29 32 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝐽𝑁 ) ∈ ( SubGrp ‘ 𝑈 ) )
34 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝐾 ∈ HL )
35 34 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝐾 ∈ Lat )
36 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑌𝐵 )
37 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑊𝐻 )
38 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
39 37 38 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑊𝐵 )
40 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵 ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
41 35 36 39 40 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
42 1 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵 ) → ( 𝑌 𝑊 ) 𝑊 )
43 35 36 39 42 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑌 𝑊 ) 𝑊 )
44 1 2 6 9 7 27 diblss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑌 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 𝑊 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
45 25 41 43 44 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
46 29 45 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) )
47 16 10 lsmelval ( ( ( 𝐽𝑁 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ⟨ 𝑓 , 𝑂 ⟩ ∈ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ↔ ∃ 𝑦 ∈ ( 𝐽𝑁 ) ∃ 𝑧 ∈ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ⟨ 𝑓 , 𝑂 ⟩ = ( 𝑦 + 𝑧 ) ) )
48 33 46 47 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( ⟨ 𝑓 , 𝑂 ⟩ ∈ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ↔ ∃ 𝑦 ∈ ( 𝐽𝑁 ) ∃ 𝑧 ∈ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ⟨ 𝑓 , 𝑂 ⟩ = ( 𝑦 + 𝑧 ) ) )
49 24 48 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ∃ 𝑦 ∈ ( 𝐽𝑁 ) ∃ 𝑧 ∈ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ⟨ 𝑓 , 𝑂 ⟩ = ( 𝑦 + 𝑧 ) )