Metamath Proof Explorer


Theorem dihord11b

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihjust.b 𝐵 = ( Base ‘ 𝐾 )
dihjust.l = ( le ‘ 𝐾 )
dihjust.j = ( join ‘ 𝐾 )
dihjust.m = ( meet ‘ 𝐾 )
dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjust.s = ( LSSum ‘ 𝑈 )
dihord2c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihord2c.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dihord2c.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
dihord2.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihord2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihord2.d + = ( +g𝑈 )
dihord2.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
Assertion dihord11b ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ ∈ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 dihjust.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjust.l = ( le ‘ 𝐾 )
3 dihjust.j = ( join ‘ 𝐾 )
4 dihjust.m = ( meet ‘ 𝐾 )
5 dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
9 dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 dihjust.s = ( LSSum ‘ 𝑈 )
11 dihord2c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
12 dihord2c.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
13 dihord2c.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
14 dihord2.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
15 dihord2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
16 dihord2.d + = ( +g𝑈 )
17 dihord2.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
18 1 2 3 4 5 6 7 8 9 10 dihord2b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
19 18 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
20 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) )
21 eqidd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑂 = 𝑂 )
22 simpl11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
23 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) → 𝐾 ∈ HL )
24 23 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝐾 ∈ HL )
25 24 hllatd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝐾 ∈ Lat )
26 simpl2l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑋𝐵 )
27 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) → 𝑊𝐻 )
28 27 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑊𝐻 )
29 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
30 28 29 syl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑊𝐵 )
31 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
32 25 26 30 31 syl3anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
33 1 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) 𝑊 )
34 25 26 30 33 syl3anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑋 𝑊 ) 𝑊 )
35 1 2 6 11 12 13 7 dibopelval3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑋 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 𝑊 ) 𝑊 ) ) → ( ⟨ 𝑓 , 𝑂 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ 𝑂 = 𝑂 ) ) )
36 22 32 34 35 syl12anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( ⟨ 𝑓 , 𝑂 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ 𝑂 = 𝑂 ) ) )
37 20 21 36 mpbir2and ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) )
38 19 37 sseldd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ ∈ ( ( 𝐽𝑁 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )