Step |
Hyp |
Ref |
Expression |
1 |
|
dihjust.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjust.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihjust.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihjust.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihjust.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihjust.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihjust.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjust.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihjust.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihjust.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
11 |
|
dihord2c.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
dihord2c.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
dihord2c.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
14 |
|
dihord2.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
dihord2.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
dihord2.d |
⊢ + = ( +g ‘ 𝑈 ) |
17 |
|
dihord2.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑁 ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
dihord2b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
19 |
18
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
20 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) |
21 |
|
eqidd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → 𝑂 = 𝑂 ) |
22 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) → 𝐾 ∈ HL ) |
24 |
23
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
25 |
24
|
hllatd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → 𝐾 ∈ Lat ) |
26 |
|
simpl2l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → 𝑋 ∈ 𝐵 ) |
27 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) → 𝑊 ∈ 𝐻 ) |
28 |
27
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
29 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
30 |
28 29
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → 𝑊 ∈ 𝐵 ) |
31 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
32 |
25 26 30 31
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
33 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
34 |
25 26 30 33
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
35 |
1 2 6 11 12 13 7
|
dibopelval3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑂 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑂 = 𝑂 ) ) ) |
36 |
22 32 34 35
|
syl12anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → ( 〈 𝑓 , 𝑂 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑂 = 𝑂 ) ) ) |
37 |
20 21 36
|
mpbir2and |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → 〈 𝑓 , 𝑂 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) |
38 |
19 37
|
sseldd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) → 〈 𝑓 , 𝑂 〉 ∈ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |