Metamath Proof Explorer


Theorem dihord11b

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihjust.b
|- B = ( Base ` K )
dihjust.l
|- .<_ = ( le ` K )
dihjust.j
|- .\/ = ( join ` K )
dihjust.m
|- ./\ = ( meet ` K )
dihjust.a
|- A = ( Atoms ` K )
dihjust.h
|- H = ( LHyp ` K )
dihjust.i
|- I = ( ( DIsoB ` K ) ` W )
dihjust.J
|- J = ( ( DIsoC ` K ) ` W )
dihjust.u
|- U = ( ( DVecH ` K ) ` W )
dihjust.s
|- .(+) = ( LSSum ` U )
dihord2c.t
|- T = ( ( LTrn ` K ) ` W )
dihord2c.r
|- R = ( ( trL ` K ) ` W )
dihord2c.o
|- O = ( h e. T |-> ( _I |` B ) )
dihord2.p
|- P = ( ( oc ` K ) ` W )
dihord2.e
|- E = ( ( TEndo ` K ) ` W )
dihord2.d
|- .+ = ( +g ` U )
dihord2.g
|- G = ( iota_ h e. T ( h ` P ) = N )
Assertion dihord11b
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> <. f , O >. e. ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) )

Proof

Step Hyp Ref Expression
1 dihjust.b
 |-  B = ( Base ` K )
2 dihjust.l
 |-  .<_ = ( le ` K )
3 dihjust.j
 |-  .\/ = ( join ` K )
4 dihjust.m
 |-  ./\ = ( meet ` K )
5 dihjust.a
 |-  A = ( Atoms ` K )
6 dihjust.h
 |-  H = ( LHyp ` K )
7 dihjust.i
 |-  I = ( ( DIsoB ` K ) ` W )
8 dihjust.J
 |-  J = ( ( DIsoC ` K ) ` W )
9 dihjust.u
 |-  U = ( ( DVecH ` K ) ` W )
10 dihjust.s
 |-  .(+) = ( LSSum ` U )
11 dihord2c.t
 |-  T = ( ( LTrn ` K ) ` W )
12 dihord2c.r
 |-  R = ( ( trL ` K ) ` W )
13 dihord2c.o
 |-  O = ( h e. T |-> ( _I |` B ) )
14 dihord2.p
 |-  P = ( ( oc ` K ) ` W )
15 dihord2.e
 |-  E = ( ( TEndo ` K ) ` W )
16 dihord2.d
 |-  .+ = ( +g ` U )
17 dihord2.g
 |-  G = ( iota_ h e. T ( h ` P ) = N )
18 1 2 3 4 5 6 7 8 9 10 dihord2b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) -> ( I ` ( X ./\ W ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) )
19 18 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> ( I ` ( X ./\ W ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) )
20 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) )
21 eqidd
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> O = O )
22 simpl11
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> ( K e. HL /\ W e. H ) )
23 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) -> K e. HL )
24 23 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> K e. HL )
25 24 hllatd
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> K e. Lat )
26 simpl2l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> X e. B )
27 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) -> W e. H )
28 27 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> W e. H )
29 1 6 lhpbase
 |-  ( W e. H -> W e. B )
30 28 29 syl
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> W e. B )
31 1 4 latmcl
 |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B )
32 25 26 30 31 syl3anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> ( X ./\ W ) e. B )
33 1 2 4 latmle2
 |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ W )
34 25 26 30 33 syl3anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> ( X ./\ W ) .<_ W )
35 1 2 6 11 12 13 7 dibopelval3
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( <. f , O >. e. ( I ` ( X ./\ W ) ) <-> ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ O = O ) ) )
36 22 32 34 35 syl12anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> ( <. f , O >. e. ( I ` ( X ./\ W ) ) <-> ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ O = O ) ) )
37 20 21 36 mpbir2and
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> <. f , O >. e. ( I ` ( X ./\ W ) ) )
38 19 37 sseldd
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) /\ ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) ) -> <. f , O >. e. ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) )