Metamath Proof Explorer


Theorem dihord11b

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihjust.b B=BaseK
dihjust.l ˙=K
dihjust.j ˙=joinK
dihjust.m ˙=meetK
dihjust.a A=AtomsK
dihjust.h H=LHypK
dihjust.i I=DIsoBKW
dihjust.J J=DIsoCKW
dihjust.u U=DVecHKW
dihjust.s ˙=LSSumU
dihord2c.t T=LTrnKW
dihord2c.r R=trLKW
dihord2c.o O=hTIB
dihord2.p P=ocKW
dihord2.e E=TEndoKW
dihord2.d +˙=+U
dihord2.g G=ιhT|hP=N
Assertion dihord11b KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WfOJN˙IY˙W

Proof

Step Hyp Ref Expression
1 dihjust.b B=BaseK
2 dihjust.l ˙=K
3 dihjust.j ˙=joinK
4 dihjust.m ˙=meetK
5 dihjust.a A=AtomsK
6 dihjust.h H=LHypK
7 dihjust.i I=DIsoBKW
8 dihjust.J J=DIsoCKW
9 dihjust.u U=DVecHKW
10 dihjust.s ˙=LSSumU
11 dihord2c.t T=LTrnKW
12 dihord2c.r R=trLKW
13 dihord2c.o O=hTIB
14 dihord2.p P=ocKW
15 dihord2.e E=TEndoKW
16 dihord2.d +˙=+U
17 dihord2.g G=ιhT|hP=N
18 1 2 3 4 5 6 7 8 9 10 dihord2b KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WIX˙WJN˙IY˙W
19 18 adantr KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WIX˙WJN˙IY˙W
20 simpr KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WfTRf˙X˙W
21 eqidd KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WO=O
22 simpl11 KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WKHLWH
23 simp11l KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WKHL
24 23 adantr KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WKHL
25 24 hllatd KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WKLat
26 simpl2l KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WXB
27 simp11r KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WWH
28 27 adantr KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WWH
29 1 6 lhpbase WHWB
30 28 29 syl KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WWB
31 1 4 latmcl KLatXBWBX˙WB
32 25 26 30 31 syl3anc KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WX˙WB
33 1 2 4 latmle2 KLatXBWBX˙W˙W
34 25 26 30 33 syl3anc KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WX˙W˙W
35 1 2 6 11 12 13 7 dibopelval3 KHLWHX˙WBX˙W˙WfOIX˙WfTRf˙X˙WO=O
36 22 32 34 35 syl12anc KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WfOIX˙WfTRf˙X˙WO=O
37 20 21 36 mpbir2and KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WfOIX˙W
38 19 37 sseldd KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WfTRf˙X˙WfOJN˙IY˙W