Metamath Proof Explorer


Theorem dihordlem7b

Description: Part of proof of Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihordlem8.b 𝐵 = ( Base ‘ 𝐾 )
dihordlem8.l = ( le ‘ 𝐾 )
dihordlem8.a 𝐴 = ( Atoms ‘ 𝐾 )
dihordlem8.h 𝐻 = ( LHyp ‘ 𝐾 )
dihordlem8.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihordlem8.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
dihordlem8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihordlem8.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihordlem8.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihordlem8.s + = ( +g𝑈 )
dihordlem8.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
Assertion dihordlem7b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑓 = 𝑔𝑂 = 𝑠 ) )

Proof

Step Hyp Ref Expression
1 dihordlem8.b 𝐵 = ( Base ‘ 𝐾 )
2 dihordlem8.l = ( le ‘ 𝐾 )
3 dihordlem8.a 𝐴 = ( Atoms ‘ 𝐾 )
4 dihordlem8.h 𝐻 = ( LHyp ‘ 𝐾 )
5 dihordlem8.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
6 dihordlem8.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
7 dihordlem8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 dihordlem8.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
9 dihordlem8.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 dihordlem8.s + = ( +g𝑈 )
11 dihordlem8.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
12 1 2 3 4 5 6 7 8 9 10 11 dihordlem7 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑓 = ( ( 𝑠𝐺 ) ∘ 𝑔 ) ∧ 𝑂 = 𝑠 ) )
13 12 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑓 = ( ( 𝑠𝐺 ) ∘ 𝑔 ) )
14 12 simprd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑂 = 𝑠 )
15 14 fveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑂𝐺 ) = ( 𝑠𝐺 ) )
16 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 2 3 4 5 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
18 17 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
19 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
20 2 3 4 7 11 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐺𝑇 )
21 16 18 19 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝐺𝑇 )
22 6 1 tendo02 ( 𝐺𝑇 → ( 𝑂𝐺 ) = ( I ↾ 𝐵 ) )
23 21 22 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑂𝐺 ) = ( I ↾ 𝐵 ) )
24 15 23 eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑠𝐺 ) = ( I ↾ 𝐵 ) )
25 24 coeq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( ( 𝑠𝐺 ) ∘ 𝑔 ) = ( ( I ↾ 𝐵 ) ∘ 𝑔 ) )
26 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑔𝑇 )
27 1 4 7 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑔𝑇 ) → 𝑔 : 𝐵1-1-onto𝐵 )
28 16 26 27 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑔 : 𝐵1-1-onto𝐵 )
29 f1of ( 𝑔 : 𝐵1-1-onto𝐵𝑔 : 𝐵𝐵 )
30 fcoi2 ( 𝑔 : 𝐵𝐵 → ( ( I ↾ 𝐵 ) ∘ 𝑔 ) = 𝑔 )
31 28 29 30 3syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( ( I ↾ 𝐵 ) ∘ 𝑔 ) = 𝑔 )
32 13 25 31 3eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑓 = 𝑔 )
33 32 14 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑓 = 𝑔𝑂 = 𝑠 ) )