Step |
Hyp |
Ref |
Expression |
1 |
|
dihordlem8.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihordlem8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihordlem8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
dihordlem8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
dihordlem8.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihordlem8.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
7 |
|
dihordlem8.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihordlem8.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihordlem8.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihordlem8.s |
⊢ + = ( +g ‘ 𝑈 ) |
11 |
|
dihordlem8.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑅 ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
dihordlem7 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑓 = ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) ∧ 𝑂 = 𝑠 ) ) |
13 |
12
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑓 = ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) ) |
14 |
12
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑂 = 𝑠 ) |
15 |
14
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑂 ‘ 𝐺 ) = ( 𝑠 ‘ 𝐺 ) ) |
16 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
2 3 4 5
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
19 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
20 |
2 3 4 7 11
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
21 |
16 18 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝐺 ∈ 𝑇 ) |
22 |
6 1
|
tendo02 |
⊢ ( 𝐺 ∈ 𝑇 → ( 𝑂 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑂 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
24 |
15 23
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑠 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
25 |
24
|
coeq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) = ( ( I ↾ 𝐵 ) ∘ 𝑔 ) ) |
26 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑔 ∈ 𝑇 ) |
27 |
1 4 7
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐵 –1-1-onto→ 𝐵 ) |
28 |
16 26 27
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑔 : 𝐵 –1-1-onto→ 𝐵 ) |
29 |
|
f1of |
⊢ ( 𝑔 : 𝐵 –1-1-onto→ 𝐵 → 𝑔 : 𝐵 ⟶ 𝐵 ) |
30 |
|
fcoi2 |
⊢ ( 𝑔 : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ 𝑔 ) = 𝑔 ) |
31 |
28 29 30
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( ( I ↾ 𝐵 ) ∘ 𝑔 ) = 𝑔 ) |
32 |
13 25 31
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑓 = 𝑔 ) |
33 |
32 14
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑓 = 𝑔 ∧ 𝑂 = 𝑠 ) ) |